A307068 Expansion of 1/(1 - Sum_{k>=1} k!*x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^j)).
1, 1, 2, 6, 14, 34, 88, 216, 532, 1322, 3290, 8142, 20192, 50080, 124144, 307878, 763474, 1893038, 4694060, 11639580, 28861736, 71567206, 177460750, 440037738, 1091134276, 2705618900, 6708953156, 16635775698, 41250705518, 102286806130, 253634237896, 628921097352, 1559496588628
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 18 2020: (Start) The a(1) = 1 through a(4) = 14 ways to choose a strict composition of each part of a composition: (1) (2) (3) (4) (1),(1) (1,2) (1,3) (2,1) (3,1) (1),(2) (1),(3) (2),(1) (2),(2) (1),(1),(1) (3),(1) (1),(1,2) (1),(2,1) (1,2),(1) (2,1),(1) (1),(1),(2) (1),(2),(1) (2),(1),(1) (1),(1),(1),(1) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2536
Crossrefs
The version for partitions is A270995.
Starting with a strict composition gives A336139.
Strict compositions are counted by A032020.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Compositions of each part of a composition are A133494.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict partitions of each part of a composition are A304969.
Compositions of each part of a strict composition are A336127.
Set partitions of strict compositions are A336140.
Strict compositions of each part of a partition are A336141.
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1 - (&+[Factorial(k)*x^Binomial(k+1,2)/(&*[ 1-x^j: j in [1..k]]): k in [1..m+2]]) ) )); // G. C. Greubel, Jan 25 2024 -
Maple
T:= proc(n, k) option remember; `if`(k<0 or n<0, 0, `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1))) end: g:= proc(n) option remember; add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)) end: a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*g(i), i=1..n)) end: seq(a(n), n=0..32); # Alois P. Heinz, Dec 16 2022
-
Mathematica
nmax = 32; CoefficientList[Series[1/(1 - Sum[k!*x^(k*(k+1)/2)/Product[ (1-x^j), {j,k}], {k,nmax}]), {x, 0, nmax}], x]
-
SageMath
m=80; def p(x, j): return product(1-x^k for k in range(1,j+1)) def f(x): return 1/(1 - sum(factorial(j)*x^binomial(j+1,2)/p(x,j) for j in range(1, m+3)) ) def A307068_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x) ).list() A307068_list(m) # G. C. Greubel, Jan 25 2024
Formula
a(0) = 1; a(n) = Sum_{k=1..n} A032020(k)*a(n-k).
Comments