cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A307357 Row sums of triangle A307116.

Original entry on oeis.org

1, 2, 4, 8, 5, 10, 11, 10, 17, 22, 12, 24, 25, 18, 30, 36, 20, 40, 47, 24, 42, 42, 32, 46, 58, 34, 50, 58, 52, 60, 63, 50, 73, 64, 56, 84, 82, 56, 83, 88, 58, 86, 88, 74, 99, 96, 76, 106, 96, 90, 136, 124, 75, 108, 131, 82, 106, 142, 130, 132, 127, 104, 129
Offset: 0

Views

Author

Rémy Sigrist, Apr 04 2019

Keywords

Comments

The scatterplot of the sequence shows 3 beams of points; this could be related to the regular structure visible on both sides of the triangle A307116.

Examples

			The first terms, alongside the corresponding rows in A307116, are:
  n  a(n)  Row n of A307116
  -  ----  ----------------
  0     1           1
  1     2          1 1
  2     4         1 2 1
  3     8        1 3 3 1
  4     5       1 1 1 1 1
  5    10      1 2 2 2 2 1
  6    11     1 3 1 1 1 3 1
  7    10    1 1 1 2 2 1 1 1
  8    17   1 2 2 3 1 3 2 2 1
  9    22  1 3 1 5 1 1 5 1 3 1
		

Crossrefs

Cf. A307116.

Programs

  • PARI
    fibs = Set(vector(100,k,fibonacci(k)))
    f(s) = if (setsearch(fibs, s), s, 1)
    { for (r=0, 62, row = vector(r+1, k, if (k==1||k==r+1, 1, f(row[k-1]+row[k]))); print1 (vecsum(row) ", ")) }

Formula

a(n) = Sum_{k = 0..n} A307116(n, k).

A307069 Given a special version of Pascal's triangle where only Fibonacci numbers are permitted, a(n) is the row number in which the n-th Fibonacci number first appears.

Original entry on oeis.org

0, 0, 2, 3, 9, 50, 51, 70, 71, 133, 134, 135, 136, 2543, 2544
Offset: 1

Views

Author

Elliott Line, Mar 22 2019

Keywords

Comments

Consider a version of Pascal's Triangle: a triangular array with a single 1 on row 0, with numbers below equal to the sum of the two numbers above it if and only if that sum appears in the Fibonacci sequence A000045. If the sum does not appear in A000045, a 1 is put in its place.
So the first few rows would be as follows:
row 0: 1
row 1: 1 1
row 2: 1 2 1
row 3: 1 3 3 1
row 4: 1 1 1 1 1
row 5: 1 2 2 2 2 1
row 6: 1 3 1 1 1 3 1
row 7: 1 1 1 2 2 1 1 1
row 8: 1 2 2 3 1 3 2 2 1
row 9: 1 3 1 5 1 1 5 1 3 1
...
a(n) is the row number in which the n-th Fibonacci number first appears in this triangular array.
a(16) > 2.2*10^5. - David A. Corneth, Mar 25 2019
a(16) > 3.2*10^6. - Daniel Suteu, Mar 26 2019
a(16) > 1.5*10^7. - Bert Dobbelaere, Apr 02 2019

Crossrefs

Cf. A000045, A307116 (the special Pascal's triangle).

Programs

  • Mathematica
    Block[{s = Array[Fibonacci, 20], t}, t = Nest[Append[#1, (PadLeft[#1[[-1]], #2] + PadRight[#1[[-1]], #2]) /. k_Integer /; FreeQ[s, k] -> 1] & @@ {#, Length@ # + 1} &, {{1}}, 10^4]; -1 + TakeWhile[Map[FirstPosition[t, #][[1]] &, s], IntegerQ]] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    lista(nn) = {print1(0, ", ", 0, ", "); v = [1,1]; nextf = 3; for (n=2, nn, w = vector(n+1); w[1] = v[1]; for (j=2, n, w[j] = v[j-1]+ v[j]; if (!isfib(w[j]), w[j] = 1)); w[n+1] = v[n]; sw = vecsort(w,,8); if (vecsearch(sw, fibonacci(nextf)), print1(n, ", "); nextf++); v = w;);} \\ Michel Marcus, Mar 22 2019
    
  • PARI
    See Corneth link \\ David A. Corneth, Mar 25 2019

Extensions

a(14)-a(15) from Michel Marcus, Mar 22 2019

A307433 A special version of Pascal's triangle where only powers of 2 are permitted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 2, 1, 8, 8, 8, 8, 8, 1, 2, 1, 1, 1, 1, 1, 16, 16, 16, 16, 1, 1, 1, 1, 1, 2, 2, 2, 1, 32, 32, 32, 1, 2, 2, 2, 1
Offset: 0

Views

Author

Rémy Sigrist, May 05 2019

Keywords

Comments

If the sum of the two numbers above in the triangular array is not a power of 2 (A000079), then a 1 is put in its place.
The ones in the table form a Sierpinski gasket (A047999).
Apparently, for any k > 0, the value 2^k first occurs on row A206332(k).
From Bernard Schott, May 05 2019: (Start)
For any m, at row 2^m - 1, there is only a string of 2^m times the number 1, then at row 2^(m+1) - 2, comes out for the first time and only once, the power of 2 equals to 2^(2^m-1). At row 2^(m+1) - 1, there are again 2^(m+1) times the number 1. This cycle can go on. Under, a part of this triangle between row 2^3 -1 and 2^4 - 2 that visualizes the explanations.
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2
4 4 4 4 4 4
8 8 8 8 8
16 16 16 16
32 32 32
64 64
128
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (End)

Examples

			The triangle begins:
                                1
                              1   1
                            1   2   1
                          1   1   1   1
                        1   2   2   2   1
                      1   1   4   4   1   1
                    1   2   1   8   1   2   1
                  1   1   1   1   1   1   1   1
                1   2   2   2   2   2   2   2   1
              1   1   4   4   4   4   4   4   1   1
            1   2   1   8   8   8   8   8   1   2   1
          1   1   1   1  16  16  16  16   1   1   1   1
        1   2   2   2   1  32  32  32   1   2   2   2   1
      1   1   4   4   1   1  64  64   1   1   4   4   1   1
    1   2   1   8   1   2   1  128  1   2   1   8   1   2   1
  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
		

Crossrefs

Cf. A000079, A007318, A047999, A206332, A307116 (analog with Fibonacci numbers).

Programs

  • PARI
    for (r=1, 13, apply(v -> print1 (v", "), row=vector(r, k, if (k==1 || k==r, 1, hammingweight(s=row[k-1]+row[k])==1, s, 1))))
Showing 1-3 of 3 results.