A307164 Maximum number of intercalates in a diagonal Latin square of order n.
0, 0, 0, 12, 4, 9, 30, 112, 72
Offset: 1
Examples
From _Eduard I. Vatutin_, May 31 2021: (Start) One of the best known diagonal Latin squares of order n=5 0 1 2 3 4 4 2 0 1 3 1 4 3 2 0 3 0 1 4 2 2 3 4 0 1 has 4 intercalates: . . 2 3 . . . . . . . . . . . . . . . . . . . . . . . 0 . 3 . . . . . . . . . . . . 3 2 . . . 3 . 0 1 . 3 . . . 4 3 . . . . . . . . . . . . 3 . 1 . . . . . . . . . . . . . . . . . . . . . . . 3 4 . . so a(5)=4. (End)
Links
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, About the maximum number of intercalates in a diagonal Latin squares of order 9 (in Russian).
- Eduard I. Vatutin, About the heuristic approximation of the spectrum of number of intercalates in diagonal Latin squares of order 14 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer, Cham (2020), 127-146.
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, Alexandr M. Albertyan, and Ilya I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17 (in Russian).
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- Index entries for sequences related to Latin squares and rectangles.
Extensions
a(9) added by Eduard I. Vatutin, Sep 21 2020
Comments