cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307164 Maximum number of intercalates in a diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 4, 9, 30, 112, 72
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

An intercalate is a 2 X 2 subsquare of a Latin square.
0 <= A307163(n) <= A307164(n) <= A092237(n). - Eduard I. Vatutin, Sep 21 2020
a(10) >= 109, a(11) >= 172, a(12) >= 324, a(13) >= 180, a(14) >= 391, a(15) >= 630, a(16) >= 960, a(17) >= 736, a(18) >= 547, a(19) >= 457, a(20) >= 1100, a(21) >= 785, a(22) >= 887, a(23) >= 899, a(24) >= 1680, a(25) >= 1700, a(26) >= 1299, a(27) >= 1372, a(28) >= 2892. - Eduard I. Vatutin, May 31 2021, updated Mar 02 2025
If, in theory, all unordered pairs of rows and columns form intercalate in their intersection, total number of intercalates will be (n*(n-1))^2, so a(n) <= (n*(n-1))^2, a(n) is asymptotically less than O(n^4). In practice a(n) << (n*(n-1))^2. - Eduard I. Vatutin, Mar 05 2025

Examples

			From _Eduard I. Vatutin_, May 31 2021: (Start)
One of the best known diagonal Latin squares of order n=5
  0 1 2 3 4
  4 2 0 1 3
  1 4 3 2 0
  3 0 1 4 2
  2 3 4 0 1
has 4 intercalates:
  . . 2 3 .   . . . . .   . . . . .   . . . . .
  . . . . .   . . 0 . 3   . . . . .   . . . . .
  . . 3 2 .   . . 3 . 0   1 . 3 . .   . 4 3 . .
  . . . . .   . . . . .   3 . 1 . .   . . . . .
  . . . . .   . . . . .   . . . . .   . 3 4 . .
so a(5)=4. (End)
		

Crossrefs

Extensions

a(9) added by Eduard I. Vatutin, Sep 21 2020