A307184 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 4-length segments.
8, 0, 3, 8, 9, 3, 4, 7, 9, 9, 1, 5, 3, 7, 6, 9, 7, 2, 6, 6, 6, 2, 9, 7, 4, 1, 9, 5, 0, 3, 2, 1, 3, 4, 2, 0, 5, 4, 6, 8, 7, 9, 1, 6, 4, 8, 5, 7, 7, 0, 8, 3, 5, 9, 2, 3, 9, 7, 2, 9, 9, 3, 2, 8, 0, 7, 0, 9, 4, 5, 6, 0, 9, 5, 0, 7, 6, 0, 3, 6, 1, 5
Offset: 0
Examples
0.80389347991537697266629741950321342054687916485770835923972993280709456095...
Links
- D. G. Radcliffe, Fat men sitting at a bar
- Philipp O. Tsvetkov, Stoichiometry of irreversible ligand binding to a one-dimensional lattice, Scientific Reports, Springer Nature (2020) Vol. 10, Article number: 21308.
Programs
-
Maple
evalf(Integrate(4*exp(2*(t + t^2/2 + t^3/3) - 11/3), t= 0..1), 120); # Vaclav Kotesovec, Mar 28 2019
-
Mathematica
RealDigits[ N[(4*Integrate[E^(2*(t + t^2/2 + t^3/3)), {t, 0, 1}])/E^(11/3), 200]][[1]]
-
PARI
intnum(t=0, 1, 4*exp(2*(t + t^2/2 + t^3/3) - 11/3)) \\ Michel Marcus, May 10 2019
Formula
4*Integral_{x=0..1} e^(2*(t + t^2/2 + t^3/3)) dx / e^(11/3).
Comments