cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307224 The total number of combinations for presenting the set of numbers 1 <= k <= sigma(n) as sums of distinct divisors of n.

Original entry on oeis.org

1, 1, 0, 1, 0, 8, 0, 1, 0, 0, 0, 1088391168, 0, 0, 0, 1, 0, 2985984, 0, 2097152, 0, 0, 0, 103312130400000000000000000000000000, 0, 0, 0, 128, 0, 5888655348399321787662336000000000000, 0, 1, 0, 0, 0, 1373825949385418214640573033104853375673916456960000000000000000
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2019

Keywords

Examples

			a(6) = 8 since the divisors of 6 are {1, 2, 3, 6}, k = 3, 6, and 9 are each the sum of 2 subsets (3: {1,2} and {3}, 6: {1,2,3} and {6}, 9: {1,2,6} and {3,6}) and the other values of k are sums of a single subset. Thus, a(6) = 1*1*2*1*1*2*1*1*2*1*1*1 = 8.
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; a[n_] := Product[T[n, k], {k,1,DivisorSigma[1,n]}]; Array[a, 50]

Formula

Equals Product_{k=1..sigma(n)} T(n, k), where T(n, k) is given in A307223.
a(n) > 0 iff n is practical (A005153).
a(2^k) = 1.
a(2^(p-1)*(2^p-1)) = 2^(2^p-1) for Mersenne exponents p.

A307225 Superpractical numbers: practical numbers m with a record total number of combinations for presenting the set of numbers 1 <= k <= sigma(m) as sums of distinct divisors of m.

Original entry on oeis.org

1, 6, 12, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1008, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 6300, 6720, 7560, 9240, 10080, 12600, 13860, 15120, 18480
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2019

Keywords

Comments

Let c(m, k) be the number of ways to present k as the sum of distinct divisors of m, for k=1..sigma(m) (A307223).
Let C(m) = Product_{k=1..sigma(m)} c(m, k) (A307224).
This sequence list (practical) numbers m with a record value of C(m).
The corresponding values of C(m) are 1, 8, 1088391168, 103312130400000000000000000000000000, ...

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; f[n_] := Times @@ (T[n, #] & /@ Range[DivisorSigma[1, n]]); s = {}; fmax = 0; Do[f1 = f[n]; If[f1 > fmax, fmax = f1; AppendTo[s, n]], {n, 1, 100}]; s
  • PARI
    upto(n) = {my(v = vector(n, i, print1(i", "); C(i)), r = -1, res = List());
    for(i = 1, n, c = v[i]; if(c > r, listput(res, i); r = c)); res}
    C(n) = {my(v = vector(sigma(n) + 1), t = 1, d = divisors(n)); v[1] = 1; for(i = 1, #d, for(j = 1, t, v[j + d[i]] += v[j] ); t+=d[i] ); vecprod(v) } \\ David A. Corneth, Mar 29 2019

Extensions

More terms from David A. Corneth, Mar 29 2019
Showing 1-2 of 2 results.