A307223
Irregular table T(n, k) read by rows: n-th row gives number of subsets of the divisors of n which sum to k for 1 <= k <= sigma(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1
Offset: 1
Table begins as:
1
1,1,1
1,0,1,1
1,1,1,1,1,1,1
1,0,0,0,1,1
1,1,2,1,1,2,1,1,2,1,1,1
1,0,0,0,0,0,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
1,0,1,1,0,0,0,0,1,1,0,1,1
1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1
-
T[n_,k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; Table[T[n, k], {n,1,10}, {k, 1, DivisorSigma[1,n]}] // Flatten
A307225
Superpractical numbers: practical numbers m with a record total number of combinations for presenting the set of numbers 1 <= k <= sigma(m) as sums of distinct divisors of m.
Original entry on oeis.org
1, 6, 12, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1008, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 6300, 6720, 7560, 9240, 10080, 12600, 13860, 15120, 18480
Offset: 1
-
T[n_, k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; f[n_] := Times @@ (T[n, #] & /@ Range[DivisorSigma[1, n]]); s = {}; fmax = 0; Do[f1 = f[n]; If[f1 > fmax, fmax = f1; AppendTo[s, n]], {n, 1, 100}]; s
-
upto(n) = {my(v = vector(n, i, print1(i", "); C(i)), r = -1, res = List());
for(i = 1, n, c = v[i]; if(c > r, listput(res, i); r = c)); res}
C(n) = {my(v = vector(sigma(n) + 1), t = 1, d = divisors(n)); v[1] = 1; for(i = 1, #d, for(j = 1, t, v[j + d[i]] += v[j] ); t+=d[i] ); vecprod(v) } \\ David A. Corneth, Mar 29 2019
Showing 1-2 of 2 results.
Comments