A307325 a(n) is the smallest number k for which prime(k+1) - prime(k) is greater than n.
2, 4, 4, 9, 9, 24, 24, 30, 30, 30, 30, 30, 30, 99, 99, 99, 99, 154, 154, 189, 189, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 1183, 1183, 1831, 1831, 1831, 1831, 1831, 1831, 1831, 1831, 2225, 2225, 2225, 2225, 2225, 2225, 2225, 2225, 3385, 3385, 3385, 3385
Offset: 1
Keywords
Examples
For n = 2, prime(2) - prime(1) = 3 - 2 = 1, prime(3) - prime(2) = 5 - 3 = 2, prime(5) - prime(4) = 11 - 7 = 4, so a(2) = 4.
References
- Laurențiu Panaitopol, Dinu Șerbănescu, Number theory and combinatorial problems for juniors, Ed.Gil, Zalău, (2003), ch. 1, p.7, pr. 25. (in Romanian).
Programs
-
MATLAB
v=primes(1000000); for u=1:100; ss=1; while and(v(ss+1)-v(ss)<=u,ss
-
Magma
v:=PrimesUpTo(10000000); sol:=[]; for u in [1..60] do for ss in [1..#v-1] do if v[ss+1]-v[ss] gt u then sol[u]:=ss; break; end if; end for; end for; sol;
-
PARI
a(n) = my(k=1); while(prime(k+1) - prime(k) <= n, k++); k; \\ Michel Marcus, Apr 03 2019
Formula
a(2*n) = a(2*n+1) = A144309(n+1) for n>=1. - Georg Fischer, Dec 05 2022
Comments