cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A308356 A(n,k) = (1/k!) * Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_k=1..n} (-1)^(i_1 + i_2 + ... + i_k) * multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, -1, 1, 0, 1, 5, 5, 0, 1, 0, -1, 36, -120, 15, -1, 1, 0, 1, 329, 6286, 2380, 56, 0, 1, 0, -1, 3655, -557991, 1056496, -52556, 203, -1, 1, 0, 1, 47844, 74741031, 1006985994, 197741887, 1192625, 757, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, May 21 2019

Keywords

Examples

			For (n,k) = (3,2), (1/2) * (Sum_{i=1..3} x^i/i!)^2 = (1/2) * (x + x^2/2 + x^3/6)^2 = (-x)^2/2 + (-3)*(-x)^3/6 + 7*(-x)^4/24 + (-10)*(-x)^5/120 + 10*(-x)^6/720. So A(3,2) = 1 - 3 + 7 - 10 + 10 = 5.
Square array begins:
   1,  0,   0,       0,           0,                0, ...
   1, -1,   1,      -1,           1,               -1, ...
   1,  0,   1,       5,          36,              329, ...
   1, -1,   5,    -120,        6286,          -557991, ...
   1,  0,  15,    2380,     1056496,       1006985994, ...
   1, -1,  56,  -52556,   197741887,   -2063348839223, ...
   1,  0, 203, 1192625, 38987482590, 4546553764660831, ...
		

Crossrefs

Columns k=0..4 give A000012, (-1)*A000035, A307349, (-1)*A307350, A307351.
Rows n=0..5 give A000007, A033999, A278990, A308363, A308389, A308390.
Main diagonal gives A308327.
Cf. A144510.

Formula

A(n,k) = Sum_{i=k..k*n} b(i) where Sum_{i=k..k*n} b(i) * (-x)^i/i! = (1/k!) * (Sum_{i=1..n} x^i/i!)^k.

A307350 a(n) = -Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (-1)^(i+j+k) * (i+j+k)!/(3!*i!*j!*k!).

Original entry on oeis.org

0, 1, -5, 120, -2380, 52556, -1192625, 27798310, -660128942, 15907062666, -387785597485, 9543399745815, -236715891871160, 5910596888393926, -148421725618783545, 3745355227481531010, -94917946415633366050, 2414582011729590475886
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-Sum[Sum[Sum[(-1)^(i + j + k)*(i + j + k)!/(3!*i!*j!*k!), {i, 1, n}], {j, 1, n}], {k, 1, n}], {n, 0, 17}] (* Amiram Eldar, Apr 03 2019 *)
  • PARI
    {a(n) = -sum(i=1, n, sum(j=1, n, sum(k=1, n, (-1)^(i+j+k)*(i+j+k)!/(6*i!*j!*k!))))}
    
  • PARI
    {a(n) = -sum(i=3, 3*n, (-1)^i*i!*polcoef(sum(j=1, n, x^j/j!)^3, i))/6} \\ Seiichi Manyama, May 20 2019

Formula

a(n) ~ -(-1)^n * 3^(3*n + 5/2) / (256*Pi*n). - Vaclav Kotesovec, Apr 04 2019

A307351 a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} (-1)^(i+j+k+l) * (i+j+k+l)!/(4!*i!*j!*k!).

Original entry on oeis.org

0, 1, 36, 6286, 1056496, 197741887, 38987482590, 7992252465604, 1685955453442326, 363605412277403725, 79808698852014867735, 17769930438868419048744, 4003861131932651139989514, 911215485942545343663605503, 209160405405110598032066208338
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[(-1)^(i + j + k + l)*(i + j + k + l)!/(4!*i!*j!*k!*l!), {i, 1, n}], {j, 1, n}], {k, 1, n}], {l, 1, n}], {n, 0, 14}] (* Amiram Eldar, Apr 03 2019 *)
  • PARI
    {a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, (-1)^(i+j+k+l)*(i+j+k+l)!/(24*i!*j!*k!*l!)))))}
    
  • PARI
    {a(n) = sum(i=4, 4*n, (-1)^i*i!*polcoef(sum(j=1, n, x^j/j!)^4, i))/24} \\ Seiichi Manyama, May 20 2019

Formula

a(n) ~ 2^(8*n + 9/2) / (1875 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 04 2019

A309117 Number of perfect matchings on a triangular lattice of width 4 and length n.

Original entry on oeis.org

1, 1, 5, 15, 56, 203, 749, 2777, 10293, 38240, 141997, 527593, 1960029, 7282483, 27057400, 100531559, 373522965, 1387822193, 5156442953, 19158736256, 71184183353, 264484479633, 982690786037, 3651182836279, 13565952140920, 50404229548515, 187276671274621
Offset: 0

Views

Author

Sergey Perepechko, Jul 13 2019

Keywords

Crossrefs

Formula

G.f.: (1-z)*(1+z)*(1-z-5*z^2-z^3+z^4)/((1+z-3*z^2-3*z^3+z^4)*(1-3*z-3*z^2+z^3+z^4)).
Showing 1-4 of 4 results.