A319101
Number of solutions to x^7 == 1 (mod n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7
Offset: 1
Solutions to x^7 == 1 (mod 29): x == 1, 7, 16, 20, 23, 24, 25 (mod 29).
Solutions to x^7 == 1 (mod 43): x == 1, 4, 11, 16, 21, 35, 41 (mod 43).
Solutions to x^7 == 1 (mod 49): x == 1, 8, 15, 22, 29, 36, 43 (mod 49) (x == 1 (mod 7)).
-
f[p_, e_] := If[Mod[p, 7] == 1, 7, 1]; f[7, 1] = 1; f[7, e_] := 7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
-
a(n)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(7, Z[i]))
A307380
Number of quintic primitive Dirichlet characters modulo n.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0
Offset: 1
Let w = exp(2*Pi/5). For n = 11, the 4 quintic primitive Dirichlet characters modulo n are:
Chi_1 = [0, 1, w, w^3, w^2, w^4, w^4, w^2, w^3, w, 1];
Chi_2 = [0, 1, w^2, w, w^4, w^3, w^3, w^4, w, w^2, 1];
Chi_3 = [0, 1, w^3, w^4, w, w^2, w^2, w, w^4, w^3, 1];
Chi_4 = [0, 1, w^4, w^2, w^3, w, w, w^3, w^2, w^4, 1],
so a(11) = 4.
Cf.
A319099 (number of solutions to x^5 == 1 (mod n)).
-
f[5, 2] = 4; f[p_, e_] := If[Mod[p, 5] == 1 && e == 1, 4, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
-
a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1)), 0))
-
A307380(n) = sumdiv(n, d, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1))); \\ (Slightly speeding the program above) - Antti Karttunen, Aug 22 2019
-
A307380(n) = { my(f=factor(n)); prod(i=1, #f~, if(((5==f[i,1])&&(2==f[i,2]))||((1==(f[i,1]%5))&&(1==f[i,2])),4,0)); }; \\ (After the multiplicative formula, much faster) - Antti Karttunen, Aug 22 2019
A307381
Number of sextic primitive Dirichlet characters modulo n.
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 5, 2, 4, 0, 1, 1, 5, 0, 1, 0, 1, 0, 5, 1, 5, 0, 1, 2, 0, 0, 0, 5, 1, 0, 5, 0, 1, 0, 5, 4, 5, 0, 5, 2, 1, 0, 5, 1, 4, 0, 1, 0, 0, 0, 1, 5, 1, 0, 1, 10, 5, 0, 1, 1, 5, 0, 20, 0, 5, 0, 5, 1, 1, 0, 1, 8, 5, 0, 0, 5, 5, 0, 5, 0, 0, 0, 1, 5, 1, 0, 1
Offset: 1
Let w = exp(2*Pi/6) = (1 + sqrt(3)*i)/2. For n = 19, the 5 sextic primitive Dirichlet characters modulo n are:
Chi_1 = [0, 1, w, w, w - 1, -w, w - 1, 1, -1, w - 1, -w + 1, 1, -1, -w + 1, w, -w + 1, -w, -w, -1];
Chi_2 = [0, 1, w - 1, w - 1, -w, w - 1, -w, 1, 1, -w, -w, 1, 1, -w, w - 1, -w, w - 1, w - 1, 1];
Chi_3 = [0, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1];
Chi_4 = [0, 1, -w, -w, w - 1, -w, w - 1, 1, 1, w - 1, w - 1, 1, 1, w - 1, -w, w - 1, -w, -w, 1];
Chi_5 = [0, 1, -w + 1, -w + 1, -w, w - 1, -w, 1, -1, -w, w, 1, -1, w, -w + 1, w, w - 1, w - 1, -1],
so a(19) = 5.
Cf.
A319100 (number of solutions to x^6 == 1 (mod n)).
-
f[2, e_] := Which[e == 1, 0, e == 2, 1, e == 3, 2, e >= 4, 0]; f[3, e_] := Which[e == 1, 1, e == 2, 4, e >= 3, 0]; f[p_, 1] := If[Mod[p, 6] == 1, 5, 1]; f[p_, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
-
a(n)={
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2, if(e==3, r*=2, if(e!=2, r=0; return(r))));
if(p==3, if(e==2, r*=4, if(e!=1, r=0; return(r))));
if(p>3, if(p%6==1&&e==1, r*=5, if(e!=1, r=0; return(r))));
);
return(r);
} \\ Jianing Song, Nov 10 2019
A329272
Number of octic primitive Dirichlet characters modulo n.
Original entry on oeis.org
1, 0, 1, 1, 3, 0, 1, 2, 0, 0, 1, 1, 3, 0, 3, 4, 7, 0, 1, 3, 1, 0, 1, 2, 0, 0, 0, 1, 3, 0, 1, 8, 1, 0, 3, 0, 3, 0, 3, 6, 7, 0, 1, 1, 0, 0, 1, 4, 0, 0, 7, 3, 3, 0, 3, 2, 1, 0, 1, 3, 3, 0, 0, 0, 9, 0, 1, 7, 1, 0, 1, 0, 7, 0, 0, 1, 1, 0, 1, 12, 0, 0, 1, 1, 21, 0, 3, 2, 7, 0, 3
Offset: 1
Let w = exp(2*Pi*i/8) = sqrt(2)/2 + i*sqrt(2)/2. For n = 17, the 7 octic primitive Dirichlet characters modulo n are:
Chi_1 = [0, 1, -i, w, -1, -w, -w^3, w^3, i, i, w^3, -w^3, -w, -1, w, -i, 1];
Chi_2 = [0, 1, -1, i, 1, i, -i, -i, -1, -1, -i, -i, i, 1, i, -1, 1];
Chi_3 = [0, 1, i, w^3, -1, -w^3, -w, w, -i, -i, w, -w, -w^3, -1, w^3, i, 1];
Chi_4 = [0, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1];
Chi_5 = [0, 1, -i, -w, -1, w, w^3, -w^3, i, i, -w^3, w^3, w, -1, -w, -i, 1];
Chi_6 = [0, 1, -1, -i, 1, -i, i, i, -1, -1, i, i, -i, 1, -i, -1, 1];
Chi_7 = [0, 1, i, -w^3, -1, w^3, w, -w, -i, -i, -w, w, w^3, -1, -w^3, i, 1],
so a(17) = 7.
Cf.
A247257 (number of solutions to x^8 == 1 (mod n)).
-
f[2, e_] := If[2 <= e <= 5, 2^(e-2), 0]; f[p_, e_] := If[e == 1, GCD[p-1, 8] - 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
-
a(n)={
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2, if(e>=2&&e<=5, r*=2^(e-2), r=0; return(r)));
if(p>2, if(e==1, r*=gcd(p-1,8)-1, r=0; return(r)));
);
return(r);
}
A354058
Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1
Offset: 1
n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
5 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 2 1 0 5 0 1 2 1 0 5 0 1 2 1 0 5 0 1
8 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
9 0 0 2 0 0 4 0 0 2 0 0 4 0 0 2 0 0 4 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 1 0 1 4 1 0 1 0 9 0 1 0 1 4 1 0 1 0 9
12 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
13 0 1 2 3 0 5 0 3 2 1 0 11 0 1 2 3 0 5 0 3
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3
16 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
17 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0 15 0 1 0 3
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 1 2 1 0 5 0 1 8 1 0 5 0 1 2 1 0 17 0 1
20 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3
Moebius transform of
A354057 applied to each column.
A354257 gives the smallest index for the nonzero terms in each row.
-
b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))
Showing 1-5 of 5 results.
Comments