cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A307380 Number of quintic primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, Apr 06 2019

Keywords

Comments

a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a fifth-power root of unity.
Mobius transform of A319099. Every term is 0 or a power of 4.

Examples

			Let w = exp(2*Pi/5). For n = 11, the 4 quintic primitive Dirichlet characters modulo n are:
  Chi_1 = [0, 1, w, w^3, w^2, w^4, w^4, w^2, w^3, w, 1];
  Chi_2 = [0, 1, w^2, w, w^4, w^3, w^3, w^4, w, w^2, 1];
  Chi_3 = [0, 1, w^3, w^4, w, w^2, w^2, w, w^4, w^3, 1];
  Chi_4 = [0, 1, w^4, w^2, w^3, w, w, w^3, w^2, w^4, 1],
so a(11) = 4.
		

Crossrefs

Number of k-th power primitive Dirichlet characters modulo n: A114643 (k=2), A160498 (k=3), A160499 (k=4), this sequence (k=5), A307381 (k=6), A307382 (k=7), A329272 (k=8).
Cf. A319099 (number of solutions to x^5 == 1 (mod n)).

Programs

  • Mathematica
    f[5, 2] = 4; f[p_, e_] := If[Mod[p, 5] == 1 && e == 1, 4, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1)), 0))
    
  • PARI
    A307380(n) = sumdiv(n, d, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1))); \\ (Slightly speeding the program above) - Antti Karttunen, Aug 22 2019
    
  • PARI
    A307380(n) = { my(f=factor(n)); prod(i=1, #f~, if(((5==f[i,1])&&(2==f[i,2]))||((1==(f[i,1]%5))&&(1==f[i,2])),4,0)); }; \\ (After the multiplicative formula, much faster) - Antti Karttunen, Aug 22 2019

Formula

Multiplicative with a(p^e) = 4 if p^e = 25 or p == 1 (mod 5) and e = 1, otherwise 0.

Extensions

More terms from Antti Karttunen, Aug 22 2019

A307381 Number of sextic primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 5, 2, 4, 0, 1, 1, 5, 0, 1, 0, 1, 0, 5, 1, 5, 0, 1, 2, 0, 0, 0, 5, 1, 0, 5, 0, 1, 0, 5, 4, 5, 0, 5, 2, 1, 0, 5, 1, 4, 0, 1, 0, 0, 0, 1, 5, 1, 0, 1, 10, 5, 0, 1, 1, 5, 0, 20, 0, 5, 0, 5, 1, 1, 0, 1, 8, 5, 0, 0, 5, 5, 0, 5, 0, 0, 0, 1, 5, 1, 0, 1
Offset: 1

Views

Author

Jianing Song, Apr 06 2019

Keywords

Comments

a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a six-power root of unity (1, (1 + sqrt(3)*i)/2, (-1 + sqrt(3)*i)/2, -1, (-1 - sqrt(3)*i)/2, (1 - sqrt(3)*i)/2).
Mobius transform of A319100.

Examples

			Let w = exp(2*Pi/6) = (1 + sqrt(3)*i)/2. For n = 19, the 5 sextic primitive Dirichlet characters modulo n are:
  Chi_1 = [0, 1, w, w, w - 1, -w, w - 1, 1, -1, w - 1, -w + 1, 1, -1, -w + 1, w, -w + 1, -w, -w, -1];
  Chi_2 = [0, 1, w - 1, w - 1, -w, w - 1, -w, 1, 1, -w, -w, 1, 1, -w, w - 1, -w, w - 1, w - 1, 1];
  Chi_3 = [0, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1];
  Chi_4 = [0, 1, -w, -w, w - 1, -w, w - 1, 1, 1, w - 1, w - 1, 1, 1, w - 1, -w, w - 1, -w, -w, 1];
  Chi_5 = [0, 1, -w + 1, -w + 1, -w, w - 1, -w, 1, -1, -w, w, 1, -1, w, -w + 1, w, w - 1, w - 1, -1],
so a(19) = 5.
		

Crossrefs

Number of k-th power primitive Dirichlet characters modulo n: A114643 (k=2), A160498 (k=3), A160499 (k=4), A307380 (k=5), this sequence (k=6), A307382 (k=7), A329272 (k=8).
Cf. A319100 (number of solutions to x^6 == 1 (mod n)).

Programs

  • Mathematica
    f[2, e_] := Which[e == 1, 0, e == 2, 1, e == 3, 2, e >= 4, 0]; f[3, e_] := Which[e == 1, 1, e == 2, 4, e >= 3, 0]; f[p_, 1] := If[Mod[p, 6] == 1, 5, 1]; f[p_, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)={
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, if(e==3, r*=2, if(e!=2, r=0; return(r))));
            if(p==3, if(e==2, r*=4, if(e!=1, r=0; return(r))));
            if(p>3, if(p%6==1&&e==1, r*=5, if(e!=1, r=0; return(r))));
        );
        return(r);
    } \\ Jianing Song, Nov 10 2019

Formula

Multiplicative with a(4) = 1, a(8) = 2, a(2^e) = 0 for e = 1 or e >= 4; a(3) = 1, a(9) = 4, a(3^e) = 0 for e >= 3; a(p) = 5 if p == 1 (mod 6) and 1 if p == 5 (mod 6), a(p^e) = 0 if p > 3 and e >= 2.

A307382 Number of septic primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, Apr 06 2019

Keywords

Comments

a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a seventh-power root of unity.
Mobius transform of A319101. Every term is 0 or a power of 6.

Examples

			Let w = exp(2*Pi/7). For n = 29, the 6 septic primitive Dirichlet characters modulo n are:
  Chi_1 = [0, 1, w, w^5, w^2, w, w^6, w^5, w^3, w^3, w^2, w^4, 1, w^4, w^6, w^6, w^4, 1, w^4, w^2, w^3, w^3, w^5, w^6, w, w^2, w^5, w, 1];
  Chi_2 = [0, 1, w^2, w^3, w^4, w^2, w^5, w^3, w^6, w^6, w^4, w, 1, w, w^5, w^5, w, 1, w, w^4, w^6, w^6, w^3, w^5, w^2, w^4, w^3, w^2, 1];
  Chi_3 = [0, 1, w^3, w, w^6, w^3, w^4, w, w^2, w^2, w^6, w^5, 1, w^5, w^4, w^4, w^5, 1, w^5, w^6, w^2, w^2, w, w^4, w^3, w^6, w, w^3, 1];
  Chi_4 = [0, 1, w^4, w^6, w, w^4, w^3, w^6, w^5, w^5, w, w^2, 1, w^2, w^3, w^3, w^2, 1, w^2, w, w^5, w^5, w^6, w^3, w^4, w, w^6, w^4, 1];
  Chi_5 = [0, 1, w^5, w^4, w^3, w^5, w^2, w^4, w, w, w^3, w^6, 1, w^6, w^2, w^2, w^6, 1, w^6, w^3, w, w, w^4, w^2, w^5, w^3, w^4, w^5, 1];
  Chi_6 = [0, 1, w^6, w^2, w^5, w^6, w, w^2, w^4, w^4, w^5, w^3, 1, w^3, w, w, w^3, 1, w^3, w^5, w^4, w^4, w^2, w, w^6, w^5, w^2, w^6, 1],
so a(29) = 6.
		

Crossrefs

Number of k-th power primitive Dirichlet characters modulo n: A114643 (k=2), A160498 (k=3), A160499 (k=4), A307380 (k=5), A307381 (k=6), this sequence (k=7), A329272 (k=8).
Cf. A319101 (number of solutions to x^7 == 1 (mod n)).

Programs

  • Mathematica
    f[7, 2] = 6; f[p_, e_] := If[Mod[p, 7] == 1 && e == 1, 6, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^7-1)%d, 0, 1)), 0))
    
  • PARI
    A307382(n) = { my(f=factor(n)); prod(i=1, #f~, if(((7==f[i,1])&&(2==f[i,2]))||((1==(f[i,1]%7))&&(1==f[i,2])),6,0)); }; \\ Antti Karttunen, Aug 22 2019

Formula

Multiplicative with a(p^e) = 6 if p^e = 49 or p == 1 (mod 7) and e = 1, otherwise 0.

Extensions

More terms from Antti Karttunen, Aug 22 2019

A354058 Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)). For the truncated version see A354061.
Each column is multiplicative.
The n-th rows contains entirely 0's if and only if n == 2 (mod 4).
For n !== 2 (mod 4), T(n,psi(n)) > T(n,k) if k is not divisible by psi(n).
Proof: this is true if n is a prime power (see the formula below). Now suppose that n = Product_{i=1..r} (p_i)^(e_i). Since n !== 2 (mod 4), (p_i)^(e_i) != 2, so T((p_i)^(e_i),psi((p_i)^(e_i))) > 0 for each i. If k is not divisible by psi(n), then it is not divisible by some psi((p_{i_0})^(e_{i_0})), so T(n,psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi((p_i)^(e_i))) > T((p_{i_0})^(e_{i_0}),k) * Product_{i!=i_0} T((p_i)^(e_i),psi((p_i)^(e_i))) >= Product_{i=1..r} T((p_i)^(e_i),k) = T(n,k).

Examples

			  n/k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
   1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   3   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
   4   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
   5   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
   6   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   7   0  1  2  1  0  5  0  1  2  1  0  5  0  1  2  1  0  5  0  1
   8   0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2
   9   0  0  2  0  0  4  0  0  2  0  0  4  0  0  2  0  0  4  0  0
  10   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  11   0  1  0  1  4  1  0  1  0  9  0  1  0  1  4  1  0  1  0  9
  12   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
  13   0  1  2  3  0  5  0  3  2  1  0 11  0  1  2  3  0  5  0  3
  14   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  15   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
  16   0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4
  17   0  1  0  3  0  1  0  7  0  1  0  3  0  1  0 15  0  1  0  3
  18   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  19   0  1  2  1  0  5  0  1  8  1  0  5  0  1  2  1  0 17  0  1
  20   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
		

Crossrefs

k-th column: A114643 (k=2), A160498 (k=3), A160499 (k=4), A307380 (k=5), A307381 (k=6), A307382 (k=7), A329272 (k=8).
Moebius transform of A354057 applied to each column.
A354257 gives the smallest index for the nonzero terms in each row.
Cf. A007431.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022
Showing 1-4 of 4 results.