A367683 Numbers whose sorted prime signature is the same as the multiset multiplicity kernel of their prime indices.
1, 2, 6, 9, 10, 12, 14, 18, 22, 26, 30, 34, 38, 40, 42, 46, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 102, 106, 110, 112, 114, 118, 122, 125, 126, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 225
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 6: {1,2} 9: {2,2} 10: {1,3} 12: {1,1,2} 14: {1,4} 18: {1,2,2} 22: {1,5} 26: {1,6} 30: {1,2,3} 34: {1,7} 38: {1,8} 40: {1,1,1,3} 42: {1,2,4} 46: {1,9} 58: {1,10} 62: {1,11} 66: {1,2,5} 70: {1,3,4}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, 20 X 20 color coded list of terms, color function: gray = 1, red = prime, gold = composite prime power, green = squarefree composite, blue-purple = numbers neither squarefree nor prime powers. Bright green = primorial, light green = even squarefree semiprime, light blue = highly composite, middle blue = in A055932, purple = squareful but not a prime power.
- Michael De Vlieger, 485 X 485 = 235225-term raster with the same color code as above.
Crossrefs
Programs
-
Mathematica
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; Select[Range[100], #==1||Sort[Last/@FactorInteger[#]] == mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[#]]&]
Comments