A307640 Least number k such that n divides gcd(sigma(k), phi(k), tau(k)).
1, 3, 18, 15, 3344, 45, 24128, 30, 882, 3344, 1012736, 126, 1953792, 24128, 16200, 168, 452263936, 2016, 1852571648, 3344, 40768, 1012736, 27007123456, 420, 1490000, 1953792, 103968, 24128, 2739920699392, 30096, 8348342681600, 840, 9114624, 452263936, 6163776, 2016
Offset: 1
Keywords
Examples
For n = 2, sigma(3) = 4, phi(3) = 2, tau(3) = 4 are divisible by 2. For n = 5, sigma(3344) = 7440, phi (3344) = 1440, tau (3344) = 20 are divisible by 5 and by 10. For n = 11, sigma(1012736) = 2161632 = 11 * 196512, phi(1012736) = 11 * 43008, tau(1012736) = 11 * 4 are divisible by 11.
References
- Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory. Ideas and methods of solving, Ed. Gil, Zalău, 2006, ch. 13, p. 79, pr. 18. (in Romanian).
Programs
-
Magma
for m in [1..16] do for n in [1..2000000] do if IsIntegral(SumOfDivisors(n)/m) and IsIntegral(EulerPhi(n)/m) and IsIntegral(NumberOfDivisors(n)/m) then m,n; break; end if; end for; end for;
-
Mathematica
Array[Block[{i = 1}, While[Mod[GCD[DivisorSigma[1, i], EulerPhi@ i,DivisorSigma[0, i]], #] != 0, i++]; i] &, 16] (*Adaptation after A222713*)
-
PARI
isok(n,k) = ! frac(gcd(sigma(k), gcd(eulerphi(k), numdiv(k)))/n); a(n) = my(k=1); while(!isok(n,k), k++); k; \\ Michel Marcus, Apr 20 2019
-
PARI
a(n) = {if(n==1,return(1)); my(res = oo, f = factor(n), hpf = f[#f~, 1]); forprime(p = 2, oo, if(p ^ (hpf - 1) > res, return(res)); forstep(i = p ^ (hpf - 1), res, p ^ (hpf - 1), if(isok(n, i), res = min(res, i); next(2) ) ) ) } \\ uses isok from above \\ David A. Corneth, Apr 22 2019
Extensions
More terms from David A. Corneth, Apr 21 2019
Comments