cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307756 Exponential convolution of number of partitions into distinct parts (A000009) with themselves.

Original entry on oeis.org

1, 2, 4, 10, 26, 66, 184, 472, 1268, 3340, 8748, 22772, 59102, 151590, 386830, 983914, 2489384, 6263284, 15703204, 39221884, 97498736, 241538472, 596115898, 1465958522, 3595196600, 8788765304, 21421616934, 52080152238, 126268822824, 305365334180, 736770528064
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> add(binomial(n, j)*b(j)*b(n-j), j=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 26 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] x^k/k!, {k, 0, nmax}]^2, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] PartitionsQ[k] PartitionsQ[n - k], {k, 0, n}], {n, 0, 30}]

Formula

E.g.f.: (Sum_{k>=0} A000009(k)*x^k/k!)^2.
a(n) = Sum_{k=0..n} binomial(n,k)*A000009(k)*A000009(n-k).
a(n) ~ exp(Pi*sqrt(2*n/3)) * 2^(n - 5/2) / (sqrt(3) * n^(3/2)). - Vaclav Kotesovec, May 06 2019