A307756 Exponential convolution of number of partitions into distinct parts (A000009) with themselves.
1, 2, 4, 10, 26, 66, 184, 472, 1268, 3340, 8748, 22772, 59102, 151590, 386830, 983914, 2489384, 6263284, 15703204, 39221884, 97498736, 241538472, 596115898, 1465958522, 3595196600, 8788765304, 21421616934, 52080152238, 126268822824, 305365334180, 736770528064
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3000
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: a:= n-> add(binomial(n, j)*b(j)*b(n-j), j=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Apr 26 2019
-
Mathematica
nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] x^k/k!, {k, 0, nmax}]^2, {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Binomial[n, k] PartitionsQ[k] PartitionsQ[n - k], {k, 0, n}], {n, 0, 30}]
Formula
E.g.f.: (Sum_{k>=0} A000009(k)*x^k/k!)^2.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 2^(n - 5/2) / (sqrt(3) * n^(3/2)). - Vaclav Kotesovec, May 06 2019