A244408 Even numbers 2k such that the smallest prime p satisfying p+q=2k (q prime) is greater than or equal to sqrt(2k).
4, 6, 8, 12, 18, 24, 30, 38, 98, 122, 126, 128, 220, 302, 308, 332, 346, 488, 556, 854, 908, 962, 992, 1144, 1150, 1274, 1354, 1360, 1362, 1382, 1408, 1424, 1532, 1768, 1856, 1928, 2078, 2188, 2200, 2438, 2512, 2530, 2618, 2642, 3458, 3818, 3848
Offset: 1
Keywords
Examples
The smallest prime for 38 is 7, and 7 >= sqrt(38).
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..74
- Tomás Oliveira e Silva, Goldbach conjecture verification
- Index entries for sequences related to Goldbach conjecture
Programs
-
Haskell
a244408 n = a244408_list !! (n-1) a244408_list = map (* 2) $ filter f [2..] where f x = sqrt (fromIntegral $ 2 * x) <= fromIntegral (a020481 x) -- Reinhard Zumkeller, Jul 07 2014
-
PARI
for(n=1, 50000, forprime(p=2, n, if(isprime(2*n-p), if(p>=sqrt(2*n), print1(2*n", ")); break))) \\ Jens Kruse Andersen, Jul 03 2014
Comments