cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307793 a(1) = 1; a(n+1) = Sum_{d|n} tau(d)*a(d), where tau = number of divisors (A000005).

Original entry on oeis.org

1, 1, 3, 7, 24, 49, 205, 411, 1668, 5011, 20095, 40191, 241372, 482745, 1931393, 7725627, 38629803, 77259607, 463562851, 927125703, 5562774334, 22251097753, 89004431205, 178008862411, 1424071142304, 4272213426961, 17088854190591, 68355416767375, 410132502535664, 820265005071329
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[DivisorSigma[0, d] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 30}]
    a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[DivisorSigma[0, k] a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 30}]
  • PARI
    a(n) = if (n==1, 1, sumdiv(n-1, d, numdiv(d)*a(d))); \\ Michel Marcus, Apr 29 2019

Formula

G.f.: x * (1 + Sum_{n>=1} tau(n)*a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{i>=1, j>=1} (1 - x^(i*j))^(a(i*j)/(i*j))) = Sum_{n>=1} a(n+1)*x^n/n.