cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307803 Inverse binomial transform of least common multiple sequence.

Original entry on oeis.org

1, -1, 3, 1, 41, 171, 799, 2633, 7881, 24391, 99611, 461649, 2252953, 10773491, 46602711, 176413201, 596116769, 1899975183, 6302881171, 24136694081, 105765310281, 476455493179, 2033813426063, 8019234229401, 29410337173561, 102444237073751, 347418130583499
Offset: 0

Views

Author

Sarah Arpin, Apr 29 2019

Keywords

Examples

			For n = 3, a(3) = binomial(3,0)*1 - binomial(3,1)*2 + binomial(3,2)*6 - binomial(3,3)*12 = 1.
		

Crossrefs

Inverse binomial transform of A003418 (shifted).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
    a:= n-> add(b(i+1)*binomial(n, i)*(-1)^i, i=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 29 2019
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, LCM[n, b[n - 1]]];
    a[n_] := Sum[b[i + 1] Binomial[n, i] (-1)^i, {i, 0, n}];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
  • Sage
    def SIbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + (((-1)^j)*(binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    LCMSeq = []
    for k in range(1,26):
        LCMSeq.append(lcm(range(1,k+1)))
    SIbinomial_transform(25, LCMSeq)
    

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*A003418(k+1).
Formula for values modulo 10: (Proof by considering the formula modulo 10)
a(n) (mod 10) = 1, if n = 0, 3, 4 (mod 5),
a(n) (mod 10) = 9, if n = 1 (mod 5),
a(n) (mod 10) = 3, if n = 2 (mod 5).