A307803 Inverse binomial transform of least common multiple sequence.
1, -1, 3, 1, 41, 171, 799, 2633, 7881, 24391, 99611, 461649, 2252953, 10773491, 46602711, 176413201, 596116769, 1899975183, 6302881171, 24136694081, 105765310281, 476455493179, 2033813426063, 8019234229401, 29410337173561, 102444237073751, 347418130583499
Offset: 0
Keywords
Examples
For n = 3, a(3) = binomial(3,0)*1 - binomial(3,1)*2 + binomial(3,2)*6 - binomial(3,3)*12 = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.
Crossrefs
Inverse binomial transform of A003418 (shifted).
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end: a:= n-> add(b(i+1)*binomial(n, i)*(-1)^i, i=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Apr 29 2019
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, LCM[n, b[n - 1]]]; a[n_] := Sum[b[i + 1] Binomial[n, i] (-1)^i, {i, 0, n}]; a /@ Range[0, 30] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
PARI
a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
-
Sage
def SIbinomial_transform(N, seq): BT = [seq[0]] k = 1 while k< N: next = 0 j = 0 while j <=k: next = next + (((-1)^j)*(binomial(k,j))*seq[j]) j = j+1 BT.append(next) k = k+1 return BT LCMSeq = [] for k in range(1,26): LCMSeq.append(lcm(range(1,k+1))) SIbinomial_transform(25, LCMSeq)
Formula
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*A003418(k+1).
Formula for values modulo 10: (Proof by considering the formula modulo 10)
a(n) (mod 10) = 1, if n = 0, 3, 4 (mod 5),
a(n) (mod 10) = 9, if n = 1 (mod 5),
a(n) (mod 10) = 3, if n = 2 (mod 5).