A307866 K-champion numbers: numbers m such that K(m) > K(j) for all j < m, where K(m) is the Kalmár function (A074206).
0, 1, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240, 288, 360, 432, 480, 576, 720, 864, 960, 1152, 1440, 1728, 1920, 2160, 2304, 2880, 3456, 4320, 5760, 6912, 8640, 11520, 17280, 23040, 25920, 30240, 34560, 46080, 51840, 60480, 69120, 86400, 103680, 120960
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..884 (terms 1..762 from Amiram Eldar, calculated by Deléglise et al.)
- David A. Corneth, Table of n, a(n) for n = 1..1544 if abs(omega(a(n)) - omega(a(n + 1))) <= 1
- M. Deléglise, M. O. Hernane, and J.-L. Nicolas, Grandes valeurs et nombres champions de la fonction arithmétique de Kalmár, Journal of Number Theory, Vol. 128, No. 6 (2008), pp. 1676-1716.
- M. Deléglise, M. O. Hernane, and J.-L. Nicolas, Tables des 761 premiers champions de la fonction de Kalmar, alternative link.
- Amiram Eldar, Table of n, a(n), A074206(a(n)), calculated by Deléglise et al.
- T. M. A. Fink, Number of ordered factorizations and recursive divisors, arXiv:2307.16691 [math.NT], 2023.
Crossrefs
Programs
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; s = {}; am=-1; Do[a1 = a[n]; If[a1>am, am=a1; AppendTo[s, n]], {n, 0, 10000}]; s
Comments