cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307972 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5*A(x)^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 58, 86, 130, 195, 286, 416, 612, 915, 1380, 2076, 3102, 4627, 6932, 10452, 15818, 23931, 36148, 54600, 82642, 125435, 190724, 290116, 441282, 671512, 1023052, 1560780, 2383578, 3642117, 5567202, 8514254, 13031192, 19960712
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2019

Keywords

Comments

Shifts 5 places left when convolved with itself.

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + 6*x^10 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, 1,
          add(a(j)*a(n-5-j), j=0..n-5))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, May 08 2019
  • Mathematica
    terms = 47; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 A[x]^2 + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = Sum[a[k] a[n - k - 5], {k, 0, n - 5}]; a[0] = a[1] = a[2] = a[3] = a[4] = 1; Table[a[n], {n, 0, 47}]
  • SageMath
    @CachedFunction
    def a(n): # a = A307972
        if (n<5): return 1
        else: return sum(a(k)*a(n-k-5) for k in range(n-4))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 26 2022

Formula

G.f.: 1/(1 - x/(1 - x^5/(1 - x^5/(1 - x/(1 - x^5/(1 - x^5/(1 - x/(1 - x^5/(1 - x^5/(1 - ...)))))))))), a continued fraction.
Recurrence: a(n+5) = Sum_{k=0..n} a(k)*a(n-k).