A308090 a(n) = gcd(2^n + n!, 3^n + n!, n+1).
1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 1, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 1
Offset: 1
Keywords
Examples
a(4) = gcd(2^4 + 4!, 3^4 + 4!, 5) = gcd(40, 105, 5) = 5. a(5) = gcd(2^5 + 5!, 3^5 + 5!, 6) = gcd(152, 363, 6) = 1.
Programs
-
Mathematica
Table[GCD[2^n+n!,3^n+n!,n+1],{n,100}] (* Harvey P. Dale, Aug 27 2020 *)
-
PARI
a(n) = gcd([2^n + n!, 3^n + n!, n+1]); \\ Michel Marcus, May 12 2019
Comments