A308124 a(n) = (2 + 7*4^n)/3.
3, 10, 38, 150, 598, 2390, 9558, 38230, 152918, 611670, 2446678, 9786710, 39146838, 156587350, 626349398, 2505397590, 10021590358, 40086361430, 160345445718, 641381782870, 2565527131478, 10262108525910, 41048434103638, 164193736414550, 656774945658198, 2627099782632790
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
Mathematica
LinearRecurrence[{5,-4},{3,10},30] (* Paolo Xausa, Nov 13 2023 *) (2+7*4^Range[0,30])/3 (* Harvey P. Dale, Aug 15 2025 *)
-
PARI
a(n) = (2 + 7*4^n)/3; \\ Stefano Spezia, Jul 23 2019
-
PARI
Vec((3 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^40)) \\ Colin Barker, Jul 23 2019
Formula
a(n) = 4*a(n-1) - 2 for n=1,2,... , a(0) = 3.
a(n+1) = a(n) + A002042(n).
Binomial transform of A141495(n+1) = 3, 7, 21, ....
From Colin Barker, Jul 23 2019: (Start)
G.f.: (3 - 5*x) / ((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n>1.
(End)
a(n+2) = a(n) + 35*A000302(n) for n=0,1,2, ... .
Extensions
a(14)-a(25) from Stefano Spezia, Jul 23 2019
Comments