A308163 Numbers for which the sum of the digits of any divisor is a power of 2.
1, 2, 4, 8, 11, 13, 17, 22, 26, 31, 44, 53, 62, 71, 79, 88, 97, 101, 103, 107, 121, 143, 169, 187, 202, 206, 211, 233, 242, 251, 277, 286, 341, 349, 367, 404, 422, 431, 439, 457, 466, 484, 503, 521, 547, 583, 619, 673, 682, 691, 701, 709, 727, 781, 808, 844
Offset: 1
Examples
Divisors(8) = {1, 2, 4, 8} with sums of digits respectively 1, 2, 4, 8, powers of 2. Divisors(13) = {1, 13} with sums of digits 1 and 4, powers of 2 . Divisors(286) = {1, 2, 11, 13, 22, 26, 143, 286} with sums of digits respectively 1, 2, 2, 4, 4, 8, 16, powers of 2.
Programs
-
Magma
sol:=[]; m:=1;for n in [1..850] do nr:=#[d: d in Divisors(n) | PrimeDivisors(&+Intseq(d)) eq [2]]; if nr eq #Divisors(n)-1 then sol[m]:=n; m:=m+1; end if; end for; sol;
-
PARI
ispp(n) = (n==1) || (isprimepower(n, &p) && (p==2)); isok(n) = fordiv(n, d, if (!ispp(sumdigits(d)), return (0))); return (1); \\ Michel Marcus, Jun 12 2019
Comments