cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308163 Numbers for which the sum of the digits of any divisor is a power of 2.

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 17, 22, 26, 31, 44, 53, 62, 71, 79, 88, 97, 101, 103, 107, 121, 143, 169, 187, 202, 206, 211, 233, 242, 251, 277, 286, 341, 349, 367, 404, 422, 431, 439, 457, 466, 484, 503, 521, 547, 583, 619, 673, 682, 691, 701, 709, 727, 781, 808, 844
Offset: 1

Views

Author

Marius A. Burtea, Jun 11 2019

Keywords

Comments

The prime numbers in A068807 belong to the sequence.

Examples

			Divisors(8) = {1, 2, 4, 8} with sums of digits respectively 1, 2, 4, 8, powers of 2.
Divisors(13) = {1, 13} with sums of digits 1 and 4, powers of 2 .
Divisors(286) = {1, 2, 11, 13, 22, 26, 143, 286} with sums of digits respectively 1, 2, 2, 4, 4, 8, 16, powers of 2.
		

Crossrefs

Programs

  • Magma
    sol:=[]; m:=1;for n in [1..850] do nr:=#[d: d in Divisors(n) | PrimeDivisors(&+Intseq(d)) eq [2]];  if nr eq #Divisors(n)-1 then sol[m]:=n; m:=m+1; end if; end for; sol;
    
  • PARI
    ispp(n) = (n==1) || (isprimepower(n, &p) && (p==2));
    isok(n) = fordiv(n, d, if (!ispp(sumdigits(d)), return (0))); return (1); \\ Michel Marcus, Jun 12 2019