A308264 Number of ordered factorizations of n into triangular numbers > 1.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..101025
Crossrefs
Programs
-
Mathematica
terms = 100; A[] = 0; Do[A[x] = x + Sum[A[x^(k (k + 1)/2)], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]] a[n_] := If[n == 1, n, Sum[If[(d < n && IntegerQ[Sqrt[8 n/d + 1]]), a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 100}]
-
PARI
A010054(n) = issquare(1 + 8*n); A308264(n) = if(1==n,n,sumdiv(n,d,if(d
A010054(n/d)*A308264(d),0))); \\ Antti Karttunen, Oct 05 2023
Formula
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} A(x^(k*(k+1)/2)).
a(1) = 1; a(n) = Sum_{d|n, dA010054(n/d)*a(d).
Extensions
Data section extended to 105 terms by Antti Karttunen, Oct 05 2023