cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A348919 Sum of the middle parts of the partitions of k into 3 parts for all 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 10, 18, 29, 47, 69, 100, 140, 191, 253, 333, 426, 540, 675, 834, 1017, 1234, 1478, 1760, 2080, 2442, 2846, 3305, 3810, 4375, 5000, 5690, 6445, 7281, 8187, 9180, 10260, 11433, 12699, 14077, 15554, 17150, 18865, 20706, 22673, 24788, 27036, 29440, 32000, 34724
Offset: 0

Views

Author

Wesley Ivan Hurt, Nov 03 2021

Keywords

Comments

Partial sums of A308266.

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      2      5     10     18     29     47     69      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x^3*(x^4 + x^3 + x^2 + x + 1)/((x + 1)^2*(x^2 + x + 1)^2*(x - 1)^5), {x, 0, 49}], x] (* Michael De Vlieger, Nov 05 2021 *)

Formula

a(n) = Sum_{m=1..n} Sum_{k=1..floor(m/3)} Sum_{i=k..floor((m-k)/2)} i.
G.f.: -x^3*(x^4+x^3+x^2+x+1)/((x+1)^2*(x^2+x+1)^2*(x-1)^5). - Alois P. Heinz, Nov 03 2021
a(n) ~ 5*n^4/864. - Stefano Spezia, Nov 04 2021
a(n) = a(n-1)+2*a(n-2)-3*a(n-4)-3*a(n-5)+3*a(n-6)+3*a(n-7)-2*a(n-9)-a(n-10)+a(n-11). - Wesley Ivan Hurt, Nov 19 2021
Showing 1-1 of 1 results.