cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144510 Array T(n,k) (n >= 1, k >= 0) read by downwards antidiagonals: T(n,k) = total number of partitions of [1, 2, ..., i] into exactly k nonempty blocks, each of size at most n, for any i in the range n <= i <= k*n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 37, 31, 4, 1, 1, 266, 842, 121, 5, 1, 1, 2431, 45296, 18252, 456, 6, 1, 1, 27007, 4061871, 7958726, 405408, 1709, 7, 1, 1, 353522, 546809243, 7528988476, 1495388159, 9268549, 6427, 8, 1
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Dec 15 2008, Jan 30 2009

Keywords

Examples

			Array begins:
1, 1,    1,       1,            1,                 1,                       1, ...
1, 2,    7,      37,          266,              2431,                   27007, ...
1, 3,   31,     842,        45296,           4061871,               546809243, ...
1, 4,  121,   18252,      7958726,        7528988476,          13130817809439, ...
1, 5,  456,  405408,   1495388159,    15467641899285,      361207016885536095, ...
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, ...
...
		

Crossrefs

For the transposed array see A144512.
Rows include A001515, A144416, A144508, A144509.
Columns include A048775, A144511.
A(n+1,n) gives A281901.
A(n,n) gives A308296.
Cf. A308292.

Programs

  • Maple
    b := proc(n, i, k) local r;
    option remember;
    if n = i then 1;
    elif i < n then 0;
    elif n < 1 then 0;
    else add( binomial(i-1,r)*b(n-1,i-1-r,k), r=0..k);
    end if;
    end proc;
    T:=proc(n,k); add(b(n,i,k),i=0..(k+1)*n); end proc;
    # Peter Luschny, Apr 26 2011
    A144510 := proc(n, k) local m;
    add(m!*coeff(expand((exp(x)*GAMMA(n+1,x)/GAMMA(n+1)-1)^k),x,m),m=k..k*n)/k! end: for row from 1 to 6 do seq(A144510(row, col), col = 0..5) od;
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); t[n_, k_] := Module[{i, ik}, ik = Array[i, k]; 1/k!* Sum[multinomial[Total[ik], ik], Evaluate[Sequence @@ Thread[{ik, 1, n}]]]]; Table[t[n-k, k], {n, 1, 10}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

Formula

T(n,k) = (1/k!)*Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_k=1..n} multinomial(i_1+i_2+...+i_k; i_1, i_2, ..., i_k).
T(n,k) = (1/k!)*Sum_{m=k..k*n} m! [x^m](e^x Gamma(n+1,x)/Gamma(n+1)-1)^k. Here [x^m]f(x) is the coefficient of x^m in the series expansion of f(x). - Peter Luschny, Apr 26 2011

A308327 a(n) = (1/n!) * Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_n=1..n} (-1)^(i_1 + i_2 + ... + i_n) * multinomial(i_1 + i_2 + ... + i_n; i_1, i_2, ..., i_n).

Original entry on oeis.org

1, -1, 1, -120, 1056496, -2063348839223, 1457689055077930674637, -569779896381467292745562607320194, 174622933743914766946635359968704455433117668396, -56466564044341292662007179162722871704054012257606338926938133618
Offset: 0

Views

Author

Seiichi Manyama, May 20 2019

Keywords

Examples

			a(2) = (1/2) * (binomial(1+1,1) - binomial(1+2,2) - binomial(2+1,1) + binomial(2+2,2)) = 1.
		

Crossrefs

Main diagonal of A308356.
Cf. A308296.

Programs

  • PARI
    {a(n) = sum(i=n, n^2, (-1)^i*i!*polcoef(sum(j=1, n, x^j/j!)^n, i))/n!}

A308441 a(n) = (1/n!) * Sum_{i=n..n^2} b(i) where Sum_{i=n..n^2} b(i) * x^i/i! = (Sum_{i=1..n} binomial(n-1,i-1)*x^i/i!)^n.

Original entry on oeis.org

1, 1, 7, 1653, 40206186, 208933247676473, 395488498710726039573053, 415462449496430820816987469491515317, 342970299885886953080843975129290159101335513911582, 299220423631045059715652854654572624968209204858890842067137945793201
Offset: 0

Views

Author

Seiichi Manyama, May 27 2019

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, binomial(n-1, j-1)*x^j/j!)^n, i))/n!}
Showing 1-3 of 3 results.