cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A144511 a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (i+j+k)!/(3!*i!*j!*k!).

Original entry on oeis.org

0, 1, 37, 842, 18252, 405408, 9268549, 216864652, 5165454442, 124762262630, 3047235458767, 75109521108771, 1865470016184352, 46631215889276662, 1172088706950306293, 29601905040172054928, 750748513858793527974, 19110455782881086439234, 488057675380082251617235
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 15 2008, Jan 30 2009

Keywords

Crossrefs

Column 3 of array in A144510.
Cf. A144658, A144660 (a very similar sum).

Programs

  • Maple
    f:=n->add( add( add( (i+j+k)!/(3!*i!*j!*k!), i=1..n),j=1..n),k=1..n); [seq(f(n),n=0..20)];
  • Mathematica
    Table[Sum[Sum[Sum[(i+j+k)!/i!/j!/k!/6,{i,1,n}],{j,1,n}],{k,1,n}],{n,1,30}]
    Table[(5 + 3*n - 3*Binomial[2*n+2, n+1] + Sum[(1 + k + 2*n)! * HypergeometricPFQ[{1, -1 - k - n, -n}, {-1 - k - 2*n, -k - n}, 1] / ((1 + k + n)*k!*n!^2), {k, 0, n}]) / 6, {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    {a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, (i+j+k)!/(6*i!*j!*k!))))} \\ Seiichi Manyama, Apr 03 2019
    
  • PARI
    {a(n) = sum(i=3, 3*n, i!*polcoef(sum(j=1, n, x^j/j!)^3, i))/6} \\ Seiichi Manyama, May 19 2019

Formula

a(n) = (5 + 3*n - 3*binomial(2*n+2, n+1) + A144660(n))/6. - Vaclav Kotesovec, Apr 04 2019

A144512 Array read by upwards antidiagonals: T(n,k) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., k+1, for 0 <= k <= (k+1)*n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 31, 37, 1, 1, 5, 121, 842, 266, 1, 1, 6, 456, 18252, 45296, 2431, 1, 1, 7, 1709, 405408, 7958726, 4061871, 27007, 1, 1, 8, 6427, 9268549, 1495388159, 7528988476, 546809243, 353522, 1, 1, 9, 24301, 216864652, 295887993624, 15467641899285
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 15 2008, Dec 21 2008

Keywords

Examples

			Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, ...
1, 3, 31, 842, 45296, 4061871, 546809243, 103123135501, ...
1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, ...
1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, ...
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, ...
...
		

Crossrefs

See A144510 for Maple code.
Columns include A048775, A144511, A144662, A147984.
Transpose of array in A144510.
Main diagonal gives A281901.

Programs

  • Maple
    b := proc(n, i, k) local r;
    option remember;
    if n = i then 1;
    elif i < n then 0;
    elif n < 1 then 0;
    else add( binomial(i-1,r)*b(n-1,i-1-r,k), r=0..k);
    end if;
    end proc;
    T:=proc(n,k); add(b(n,i,k),i=0..(k+1)*n); end proc;
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); t[n_, k_] := Module[{i, ik}, ik = Array[i, k]; 1/k!* Sum[multinomial[Total[ik], ik], Evaluate[Sequence @@ Thread[{ik, 1, n}]]]]; Table[t[n-k, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

A308292 A(n,k) = Sum_{i_1=0..n} Sum_{i_2=0..n} ... Sum_{i_k=0..n} multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 16, 19, 4, 1, 1, 65, 271, 69, 5, 1, 1, 326, 7365, 5248, 251, 6, 1, 1, 1957, 326011, 1107697, 110251, 923, 7, 1, 1, 13700, 21295783, 492911196, 191448941, 2435200, 3431, 8, 1, 1, 109601, 1924223799, 396643610629, 904434761801, 35899051101, 55621567, 12869, 9, 1
Offset: 0

Views

Author

Seiichi Manyama, May 19 2019

Keywords

Comments

For r > 1, row r is asymptotic to sqrt(2*Pi) * (r*n)^(r*n + 1/2) / ((r!)^n * exp(r*n-1)). - Vaclav Kotesovec, May 24 2020

Examples

			For (n,k) = (3,2), (Sum_{i=0..3} x^i/i!)^2 = (1 + x + x^2/2 + x^3/6)^2 = 1 + 2*x + 4*x^2/2 + 8*x^3/6 + 14*x^4/24 + 20*x^5/120 + 20*x^6/720. So A(3,2) = 1 + 2 + 4 + 8 + 14 + 20 + 20 = 69.
Square array begins:
   1, 1,    1,        1,             1,                   1, ...
   1, 2,    5,       16,            65,                 326, ...
   1, 3,   19,      271,          7365,              326011, ...
   1, 4,   69,     5248,       1107697,           492911196, ...
   1, 5,  251,   110251,     191448941,        904434761801, ...
   1, 6,  923,  2435200,   35899051101,    1856296498826906, ...
   1, 7, 3431, 55621567, 7101534312685, 4098746255797339511, ...
		

Crossrefs

Columns k=0..4 give A000012, A000027(n+1), A030662(n+1), A144660, A144661.
Rows n=0..4 give A000012, A000522, A003011, A308294, A308295.
Main diagonal gives A274762.
Cf. A144510.

Formula

A(n,k) = Sum_{i=0..k*n} b(i) where Sum_{i=0..k*n} b(i) * x^i/i! = (Sum_{i=0..n} x^i/i!)^k.

A308356 A(n,k) = (1/k!) * Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_k=1..n} (-1)^(i_1 + i_2 + ... + i_k) * multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, -1, 1, 0, 1, 5, 5, 0, 1, 0, -1, 36, -120, 15, -1, 1, 0, 1, 329, 6286, 2380, 56, 0, 1, 0, -1, 3655, -557991, 1056496, -52556, 203, -1, 1, 0, 1, 47844, 74741031, 1006985994, 197741887, 1192625, 757, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, May 21 2019

Keywords

Examples

			For (n,k) = (3,2), (1/2) * (Sum_{i=1..3} x^i/i!)^2 = (1/2) * (x + x^2/2 + x^3/6)^2 = (-x)^2/2 + (-3)*(-x)^3/6 + 7*(-x)^4/24 + (-10)*(-x)^5/120 + 10*(-x)^6/720. So A(3,2) = 1 - 3 + 7 - 10 + 10 = 5.
Square array begins:
   1,  0,   0,       0,           0,                0, ...
   1, -1,   1,      -1,           1,               -1, ...
   1,  0,   1,       5,          36,              329, ...
   1, -1,   5,    -120,        6286,          -557991, ...
   1,  0,  15,    2380,     1056496,       1006985994, ...
   1, -1,  56,  -52556,   197741887,   -2063348839223, ...
   1,  0, 203, 1192625, 38987482590, 4546553764660831, ...
		

Crossrefs

Columns k=0..4 give A000012, (-1)*A000035, A307349, (-1)*A307350, A307351.
Rows n=0..5 give A000007, A033999, A278990, A308363, A308389, A308390.
Main diagonal gives A308327.
Cf. A144510.

Formula

A(n,k) = Sum_{i=k..k*n} b(i) where Sum_{i=k..k*n} b(i) * (-x)^i/i! = (1/k!) * (Sum_{i=1..n} x^i/i!)^k.

A281901 Number of scenarios in the Gift Exchange Game with n players and n wrapped gifts when a gift can be stolen at most n times.

Original entry on oeis.org

1, 2, 31, 18252, 1495388159, 34155922905682979, 350521520018942991464535019, 2371013832433361706367594400829713564440, 14584126149704606223764458141727351569547933381159988406, 107640669875812795238625627484701500354901860426640161278022882392148747562
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2017

Keywords

Comments

Also total number of partitions of [k] into exactly n nonempty blocks, each of size at most n+1, for any k in the range n <= k <= n^2+n.

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, t) option remember; `if`(t*i add(b(j, n+1, n), j=0..(n+1)*n):
    seq(a(n), n=0..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[t*iJean-François Alcover, Mar 13 2017, translated from Maple *)

Formula

a(n) = A144510(n+1,n) = A144512(n,n).

A308296 a(n) = (1/n!) * Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_n=1..n} multinomial(i_1+i_2+...+i_n; i_1, i_2, ... , i_n).

Original entry on oeis.org

1, 1, 7, 842, 7958726, 15467641899285, 10893033763705794846727, 4247805448772073978048752721163278, 1299618941291522676629215597535104557826094801396, 419715170056359079715862408734598208208707081189266290220651371206
Offset: 0

Views

Author

Seiichi Manyama, May 19 2019

Keywords

Examples

			a(2) = (1/2) * (binomial(1+1,1) + binomial(1+2,2) + binomial(2+1,1) + binomial(2+2,2)) = 7.
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, x^j/j!)^n, i))/n!}

Formula

a(n) = A144510(n,n).
Showing 1-6 of 6 results.