A308385 a(n) is the last square visited by fers moves on a spirally numbered (2n-1) X (2n-1) board, moving to the lowest available unvisited square at each step.
1, 3, 15, 29, 61, 87, 139, 177, 249, 299, 391, 453, 565, 639, 771, 857, 1009, 1107, 1279, 1389, 1581, 1703, 1915, 2049, 2281, 2427, 2679, 2837, 3109, 3279, 3571, 3753, 4065, 4259, 4591, 4797, 5149, 5367, 5739, 5969, 6361, 6603, 7015, 7269, 7701, 7967, 8419
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Stephen Emmerson and Geoff Foster, A glossary of fairy chess definitions, British Chess Problem Society, 2018.
- Wikipedia, Ferz
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[(3/2)*(5+(-1)^n) - (10+(-1)^n)*n + 4*n^2: n in [1..50]]; // Vincenzo Librandi, Aug 01 2019
-
Mathematica
Table[(3/2) (5 + (-1)^n) - (10 + (-1)^n) n + 4 n^2, {n, 60}] (* Vincenzo Librandi, Aug 01 2019 *)
-
PARI
Vec(x*(1 + 2*x + 10*x^2 + 10*x^3 + 9*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^40)) \\ Colin Barker, May 23 2019
Formula
a(n) = (4n^2-9n+6)*[n is odd] + (4n^2-11n+9)*[n is even] where [] is the Iverson bracket.
From Colin Barker, May 23 2019: (Start)
G.f.: x*(1 + 2*x + 10*x^2 + 10*x^3 + 9*x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = (3/2)*(5+(-1)^n) - (10+(-1)^n)*n + 4*n^2.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
E.g.f.: (1/2)*exp(-x)*(3 + 2*x + exp(2*x)*(15 - 12*x + 8*x^2)) - 9. - Stefano Spezia, Aug 17 2019
Comments