cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308385 a(n) is the last square visited by fers moves on a spirally numbered (2n-1) X (2n-1) board, moving to the lowest available unvisited square at each step.

Original entry on oeis.org

1, 3, 15, 29, 61, 87, 139, 177, 249, 299, 391, 453, 565, 639, 771, 857, 1009, 1107, 1279, 1389, 1581, 1703, 1915, 2049, 2281, 2427, 2679, 2837, 3109, 3279, 3571, 3753, 4065, 4259, 4591, 4797, 5149, 5367, 5739, 5969, 6361, 6603, 7015, 7269, 7701, 7967, 8419
Offset: 1

Views

Author

Sangeet Paul, May 23 2019

Keywords

Comments

A 5 X 5 board, for example, is numbered with the square spiral:
.
21--22--23--24--25
|
20 7---8---9--10
| | |
19 6 1---2 11
| | | |
18 5---4---3 12
| |
17--16--15--14--13
.
A fers is a (1,1)-leaper and can move one square diagonally.

Crossrefs

Programs

  • Magma
    [(3/2)*(5+(-1)^n) - (10+(-1)^n)*n + 4*n^2: n in [1..50]]; // Vincenzo Librandi, Aug 01 2019
  • Mathematica
    Table[(3/2) (5 + (-1)^n) - (10 + (-1)^n) n + 4 n^2, {n, 60}] (* Vincenzo Librandi, Aug 01 2019 *)
  • PARI
    Vec(x*(1 + 2*x + 10*x^2 + 10*x^3 + 9*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^40)) \\ Colin Barker, May 23 2019
    

Formula

a(n) = (4n^2-9n+6)*[n is odd] + (4n^2-11n+9)*[n is even] where [] is the Iverson bracket.
a(n) = A054556(n)*[n is odd] + (A054552(n)+1)*[n is even] where [] is the Iverson bracket.
a(n) = A316884(n^2)*[n is odd] + A316884(n^2-n)*[n is even] where [] is the Iverson bracket.
From Colin Barker, May 23 2019: (Start)
G.f.: x*(1 + 2*x + 10*x^2 + 10*x^3 + 9*x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = (3/2)*(5+(-1)^n) - (10+(-1)^n)*n + 4*n^2.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
E.g.f.: (1/2)*exp(-x)*(3 + 2*x + exp(2*x)*(15 - 12*x + 8*x^2)) - 9. - Stefano Spezia, Aug 17 2019