A308486 Numbers such that the sum of divisors divides the concatenation (in ascending order) of divisors.
1, 2, 6, 10, 40, 98, 112, 120, 1904, 2680, 4040, 4128, 5136, 9920, 12224, 17900, 20880, 27800, 44160, 55520, 57121, 62240, 86866, 158880, 178120, 1431808, 1773920, 1825280, 1918640, 3751328, 5452288, 6749600, 7262120, 7446720, 9916832, 17777440, 46168000, 101829808
Offset: 1
Examples
Divisors of 98 are 1, 2, 7, 14, 49, 98 and their sum is sigma(98) = 171. Then, 127144998 / 171 = 743538.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..50
Programs
-
Magma
k:=1; sol:=[]; for u in [1..10000000] do D:=Divisors(u); conc:=D[1]; for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1]; end for; if conc mod SumOfDivisors(u) eq 0 then sol[k]:=u; k:=k+1; end if; end for; sol; // Marius A. Burtea, Jun 01 2019
-
Maple
with(numtheory): P:=proc(q) local n; for n from 1 to q do if frac(parse(cat(op(sort([op(divisors(n))]))))/sigma(n))=0 then print(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range[10^6], Mod[FromDigits@ Flatten@ IntegerDigits[#], Total@ #] == 0 &@ Divisors@ # &] (* Michael De Vlieger, Jun 03 2019 *)
-
PARI
concd(n) = my(d=divisors(n), s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ A037278 isok(n) = (concd(n) % sigma(n)) == 0; \\ Michel Marcus, Jun 05 2019
Extensions
a(30)-a(38) from Giovanni Resta, May 31 2019
Comments