cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308486 Numbers such that the sum of divisors divides the concatenation (in ascending order) of divisors.

Original entry on oeis.org

1, 2, 6, 10, 40, 98, 112, 120, 1904, 2680, 4040, 4128, 5136, 9920, 12224, 17900, 20880, 27800, 44160, 55520, 57121, 62240, 86866, 158880, 178120, 1431808, 1773920, 1825280, 1918640, 3751328, 5452288, 6749600, 7262120, 7446720, 9916832, 17777440, 46168000, 101829808
Offset: 1

Views

Author

Paolo P. Lava, May 31 2019

Keywords

Comments

Numbers k such that A000203(k) divides A037278(k). - Michel Marcus, Jun 02 2019.
Similar to A308533 where anti-divisors are considered.

Examples

			Divisors of 98 are 1, 2, 7, 14, 49, 98 and their sum is sigma(98) = 171. Then, 127144998 / 171 = 743538.
		

Crossrefs

Programs

  • Magma
    k:=1; sol:=[];
    for u in [1..10000000] do D:=Divisors(u); conc:=D[1];
        for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1];
        end for;
          if conc mod SumOfDivisors(u) eq 0 then sol[k]:=u; k:=k+1; end if;
    end for;
    sol; // Marius A. Burtea, Jun 01 2019
    
  • Maple
    with(numtheory): P:=proc(q) local n; for n from 1 to q do if frac(parse(cat(op(sort([op(divisors(n))]))))/sigma(n))=0 then
    print(n); fi; od; end: P(10^6);
  • Mathematica
    Select[Range[10^6], Mod[FromDigits@ Flatten@ IntegerDigits[#], Total@ #] == 0 &@ Divisors@ # &] (* Michael De Vlieger, Jun 03 2019 *)
  • PARI
    concd(n) = my(d=divisors(n), s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ A037278
    isok(n) = (concd(n) % sigma(n)) == 0; \\ Michel Marcus, Jun 05 2019

Extensions

a(30)-a(38) from Giovanni Resta, May 31 2019