cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308554 Expansion of e.g.f. Sum_{k>=1} tau(k)*(exp(x) - 1)^k/k!, where tau = number of divisors (A000005).

Original entry on oeis.org

1, 3, 9, 30, 113, 472, 2145, 10514, 55428, 313255, 1886888, 12029741, 80701715, 567541878, 4175795147, 32104799401, 257561662496, 2151841672173, 18676002357864, 167951667633495, 1561420657033927, 14980472336450530, 148140814019762129, 1508776236781766431
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Comments

Stirling transform of A000005.

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; uses numtheory;
         `if`(n=0, tau(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..24);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[0, k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[StirlingS2[n, k] DivisorSigma[0, k], {k, 1, n}], {n, 1, 24}]

Formula

G.f.: Sum_{k>=1} tau(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*tau(k).