cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A330351 Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.

Original entry on oeis.org

1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} (exp(x) - 1)^(i*j) / (i*j).
E.g.f.: log(Product_{k>=1} 1 / (1 - (exp(x) - 1)^k)^(1/k)).
G.f.: Sum_{k>=1} (k - 1)! * tau(k) * x^k / Product_{j=1..k} (1 - j*x), where tau = A000005.
a(n) = Sum_{k=1..n} Stirling2(n,k) * (k - 1)! * tau(k).
a(n) ~ n! * (log(n) + 2*gamma - log(2) - log(log(2))) / (n * (log(2))^n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 14 2019

A308555 Expansion of e.g.f. Sum_{k>=1} sigma(k)*(exp(x) - 1)^k/k!, where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 4, 14, 53, 222, 1011, 4944, 25884, 144963, 865556, 5477661, 36518635, 255323564, 1867122987, 14259709474, 113593734317, 942317654779, 8123227487723, 72599829900774, 671199117610868, 6407156027307909, 63061416571124056, 639303956718643041, 6670690645674913424
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Comments

Stirling transform of A000203.

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; uses numtheory;
         `if`(n=0, sigma(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..24);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[StirlingS2[n, k] DivisorSigma[1, k], {k, 1, n}], {n, 1, 24}]

Formula

G.f.: Sum_{k>=1} sigma(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*sigma(k).
Showing 1-2 of 2 results.