cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308564 Expansion of e.g.f. Sum_{k>=1} phi(k)*(exp(x) - 1)^k/k!, where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 2, 6, 22, 90, 404, 1974, 10366, 57864, 341690, 2134022, 14104624, 98498972, 723664482, 5561589508, 44473028634, 368602225688, 3159852790392, 27997141025686, 256410638073082, 2428063270357748, 23774001479212114, 240580239864321604, 2513553050765310236
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Comments

Stirling transform of A000010.

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; uses numtheory;
         `if`(n=0, phi(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..24);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[StirlingS2[n, k] EulerPhi[k], {k, 1, n}], {n, 1, 24}]

Formula

G.f.: Sum_{k>=1} phi(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*phi(k).