cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308813 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) is Sum_{d|n} k^(d-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 5, 3, 1, 1, 5, 10, 11, 2, 1, 1, 6, 17, 31, 17, 4, 1, 1, 7, 26, 69, 82, 39, 2, 1, 1, 8, 37, 131, 257, 256, 65, 4, 1, 1, 9, 50, 223, 626, 1045, 730, 139, 3, 1, 1, 10, 65, 351, 1297, 3156, 4097, 2218, 261, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2019

Keywords

Examples

			Square array, A(n,k), begins:
  1, 1,  1,   1,    1,     1,     1, ...
  1, 2,  3,   4,    5,     6,     7, ...
  1, 2,  5,  10,   17,    26,    37, ...
  1, 3, 11,  31,   69,   131,   223, ...
  1, 2, 17,  82,  257,   626,  1297, ...
  1, 4, 39, 256, 1045,  3156,  7819, ...
  1, 2, 65, 730, 4097, 15626, 46657, ...
Antidiagonal triangle, T(n,k), begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  2,   1;
  1,  4,  5,   3,    1;
  1,  5, 10,  11,    2,    1;
  1,  6, 17,  31,   17,    4,    1;
  1,  7, 26,  69,   82,   39,    2,    1;
  1,  8, 37, 131,  257,  256,   65,    4,   1;
  1,  9, 50, 223,  626, 1045,  730,  139,   3,   1;
  1, 10, 65, 351, 1297, 3156, 4097, 2218, 261,   4,   1;
		

Crossrefs

Row n=1..3 give A000012, A000027(k+1), A002522.
A(n,n) gives A308814.

Programs

  • Magma
    A:= func< n,k | (&+[k^(d-1): d in Divisors(n)]) >;
    A308813:= func< n,k | A(k+1,n-k-1) >;
    [A308813(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    A[n_, k_] := DivisorSum[n, If[k == # - 1 == 0, 1, k^(# - 1)] &];
    Table[A[k + 1, n - k - 1], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Amiram Eldar, May 07 2021 *)
  • SageMath
    def A(n,k): return sum(k^(j-1) for j in (1..n) if (j).divides(n))
    def A308813(n,k): return A(k+1,n-k-1)
    flatten([[A308813(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 26 2024

Formula

G.f. of column k: Sum_{j>=1} x^j/(1 - k*x^j).
T(n, k) = Sum_{d|(k+1)} (n-k-1)^(d-1), with T(n, n) = 1. - G. C. Greubel, Jun 26 2024