A308820 a(n) = Product_{k=1..n} ceiling(n/k)!.
1, 2, 12, 96, 2880, 34560, 5806080, 92897280, 25082265600, 2006581248000, 794606174208000, 19070548180992000, 208250386136432640000, 5831010811820113920000, 4198327784510482022400000, 3224315738504050193203200000, 14799609239733590386802688000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..178
Programs
-
Magma
[(&*[Factorial(Ceiling(n/(n-j+1))): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Mar 08 2023
-
Maple
seq(mul(ceil(n/k)!, k=1..n), n=1..30); # Ridouane Oudra, Apr 10 2023
-
Mathematica
a[n_] := Product[Ceiling[n/k]!, {k, 1, n}]; Table[a[n], {n, 1, 17}]
-
PARI
a(n) = prod(k=1, n, ceil(n/k)!); \\ Michel Marcus, Jun 27 2019
-
SageMath
def A308820(n): return product( factorial(ceil(n/(n-k+1))) for k in range(1,n+1)) [A308820(n) for n in range(1,21)] # G. C. Greubel, Mar 08 2023
Formula
a(n) = Product_{k=1..n-1} Product_{d|k} (d + 1).
a(n) = Product_{k=1..n-1} (k + 1)^floor((n-1)/k). - Ridouane Oudra, Apr 10 2023