A308833 Numbers r such that the r-th tetrahedral number A000292(r) divides r!.
1, 7, 8, 13, 14, 19, 20, 23, 24, 25, 26, 31, 32, 33, 34, 37, 38, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 61, 62, 63, 64, 67, 68, 73, 74, 75, 76, 79, 80, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 97, 98, 103, 104, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1
Examples
The 7th tetrahedral number is 84, and 84*60 = 5040 = 7!.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q := n -> (irem(n!, n*(n+1)*(n+2)/6) = 0): select(q, [$1..120])[];
-
Mathematica
Select[Range@ 120, Mod[#!, Pochhammer[#, 3]/6] == 0 &] (* Michael De Vlieger, Jul 08 2019 *)
-
PARI
isok(k) = !(k! % (k*(k+1)*(k+2)/6)); \\ Michel Marcus, Jun 28 2019
-
PARI
is(n) = { my(f = factor(binomial(n + 2, 3))); forstep(i = #f~, 1, -1, if(val(n, f[i, 1]) - f[i, 2] < 0, return(0) ) ); 1 } val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Mar 22 2021
Comments