A308876 Expansion of e.g.f. exp(x)*(1 - x)/(1 - 2*x).
1, 2, 7, 40, 317, 3166, 37987, 531812, 8508985, 153161722, 3063234431, 67391157472, 1617387779317, 42052082262230, 1177458303342427, 35323749100272796, 1130359971208729457, 38432239021096801522, 1383560604759484854775, 52575302980860424481432
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..403
Crossrefs
Programs
-
Maple
a:= n-> n! * add(ceil(2^(n-k-1))/k!, k=0..n): seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
-
Mathematica
nmax = 19; CoefficientList[Series[Exp[x] (1 - x)/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]! Table[1 + Sum[Binomial[n,k] 2^(k - 1) k!, {k, 1, n}], {n, 0, 19}]
Formula
a(n) = 1 + Sum_{k=1..n} binomial(n,k) * 2^(k-1) * k!.
a(n) ~ n! * 2^(n-1) * exp(1/2). - Vaclav Kotesovec, Jun 29 2019
a(n) = Sum_{k=0..n} k! * A271705(n,k). - Alois P. Heinz, Sep 12 2019
Comments