cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A308925 Sum of the largest parts in the partitions of n into 6 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 8, 8, 15, 20, 17, 24, 35, 42, 50, 66, 61, 92, 102, 122, 129, 180, 150, 237, 233, 296, 260, 370, 300, 463, 398, 521, 467, 708, 527, 845, 667, 935, 768, 1158, 839, 1372, 1039, 1547, 1233, 1898, 1294, 2217, 1612
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Maple
    N:= proc(m,k,n) option remember;
         local q,t;
         if m = 1 then if k=n and isprime(k) then return 1
           else return 0
         fi fi;
         if m*k < n then return 0 fi;
         t:= 0;
         q:= ceil((n-k)/(m-1))-1;
         do
           q:= nextprime(q);
           if q > min(k, n-k) then return t fi;
           t:= t + procname(m-1,q,n-k)
         od;
    end proc:
    F:= proc(n) local p, q, t;
      p:= ceil(n/6)-1;
      t:= 0;
      do
        p:= nextprime(p);
        if p >= n then return t fi;
        q:= ceil((n-p)/5)-1;
        do
          q:= nextprime(q);
          if q > min(p,n-p) then break fi;
          t:= t + p*N(5,q,n-p);
        od
      od
    end proc:
    map(F, [$0..100]); # Robert Israel, Jul 02 2019
  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[(n - i - j - k - l - m)*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * (n-i-j-k-l-m), where c = A010051.
a(n) = A308919(n) - A308920(n) - A308921(n) - A308922(n) - A308923(n) - A308924(n).

A308919 Sum of all the parts in the partitions of n into 6 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 13, 14, 30, 32, 51, 72, 57, 80, 105, 132, 138, 192, 175, 260, 270, 336, 319, 480, 372, 608, 561, 748, 630, 936, 740, 1178, 936, 1320, 1107, 1764, 1247, 2068, 1575, 2346, 1786, 2880, 2009, 3400, 2397, 3796, 2809, 4644
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Sum[Sum[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]

Formula

a(n) = n * Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-k-j-l-m), where c = A010051.
a(n) = n * A259196(n).
a(n) = A308920(n) + A308921(n) + A308922(n) + A308923(n) + A308924(n) + A308925(n).

A308920 Sum of the smallest parts in the partitions of n into 6 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 9, 6, 9, 10, 14, 12, 18, 14, 24, 20, 29, 22, 41, 24, 48, 34, 57, 36, 69, 40, 85, 48, 90, 54, 120, 58, 132, 70, 150, 76, 176, 82, 202, 94, 221, 106, 266, 108, 293, 128, 328, 140, 366, 146, 426, 162, 450
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[m*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-k-j-l-m) * m, where c = A010051.
a(n) = A308919(n) - A308921(n) - A308922(n) - A308923(n) - A308924(n) - A308925(n).

A308922 Sum of the fourth largest parts in the partitions of n into 6 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 10, 7, 11, 12, 16, 14, 24, 20, 32, 29, 40, 32, 55, 37, 70, 56, 81, 59, 102, 72, 128, 85, 139, 101, 182, 112, 209, 139, 233, 151, 287, 179, 336, 209, 372, 244, 458, 258, 520, 323, 585, 354, 683, 387, 792
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[k*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * k, where c = A010051.
a(n) = A308919(n) - A308920(n) - A308921(n) - A308923(n) - A308924(n) - A308925(n).

A308923 Sum of the third largest parts in the partitions of n into 6 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 5, 5, 8, 10, 9, 11, 16, 18, 21, 28, 27, 36, 41, 48, 46, 67, 54, 82, 78, 99, 86, 126, 104, 156, 129, 181, 152, 238, 175, 277, 221, 325, 249, 405, 295, 480, 342, 542, 394, 660, 430, 752, 517, 851, 584, 1005, 643
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[j*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
    Table[Total[Select[IntegerPartitions[n,{6}],AllTrue[#,PrimeQ]&][[;;,3]]],{n,-0,70}] (* Harvey P. Dale, Sep 24 2024 *)

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * j, where c = A010051.
a(n) = A308919(n) - A308920(n) - A308921(n) - A308922(n) - A308924(n) - A308925(n).

A308924 Sum of the second largest parts in the partitions of n into 6 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 6, 8, 14, 11, 16, 20, 28, 27, 38, 35, 52, 51, 66, 60, 94, 74, 121, 112, 154, 136, 194, 162, 253, 205, 289, 246, 382, 283, 457, 365, 533, 415, 652, 475, 778, 554, 857, 642, 1048, 690, 1195, 835, 1345, 944, 1564
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{6}],AllTrue[#,PrimeQ]&][[All,2]]],{n,0,60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 29 2021 *)

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * i, where c = A010051.
a(n) = A308919(n) - A308920(n) - A308921(n) - A308922(n) - A308923(n) - A308925(n).
Showing 1-6 of 6 results.