cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371025 Triangle read by rows: T(n, k) = 2^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j)* Pochhammer(j/2, n).

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 0, 15, 18, 6, 0, 105, 174, 108, 24, 0, 945, 1950, 1710, 720, 120, 0, 10395, 25290, 28080, 16920, 5400, 720, 0, 135135, 374850, 497070, 383040, 176400, 45360, 5040, 0, 2027025, 6267870, 9574740, 8883000, 5266800, 1965600, 423360, 40320
Offset: 0

Views

Author

Peter Luschny, Mar 08 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,      1;
[2] 0,      3,      2;
[3] 0,     15,     18,      6;
[4] 0,    105,    174,    108,     24;
[5] 0,    945,   1950,   1710,    720,    120;
[6] 0,  10395,  25290,  28080,  16920,   5400,   720;
[7] 0, 135135, 374850, 497070, 383040, 176400, 45360, 5040;
		

Crossrefs

Cf. A000142 (main diagonal), A001147 (column 1), A308939 (row sums).

Programs

  • Maple
    A371025 := (n, k) -> local j; 2^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/2, n), j = 0..k); seq(seq(A371025(n, k), k = 0..n), n = 0..9);
  • SageMath
    from functools import cache
    @cache
    def T(n, k):   # after Werner Schulte
        if k == 0: return 0**n
        if k == n: return n * T(n-1, n-1)
        return k * T(n-1, k-1) + (2*n - 2 + k) * T(n-1, k)
    for n in range(8): print([T(n, k) for k in range(n + 1)])
    # Peter Luschny, Mar 17 2024

Formula

T(n, k) = k * T(n-1, k-1) + (2*n - 2 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - Werner Schulte, Mar 17 2024

A346432 a(0) = 1; a(n) = n! * Sum_{k=0..n-1} (n-k+1) * a(k) / k!.

Original entry on oeis.org

1, 2, 14, 144, 1968, 33600, 688320, 16450560, 449326080, 13806858240, 471395635200, 17703899136000, 725338710835200, 32193996432998400, 1538840509503897600, 78808952068374528000, 4305129487814098944000, 249876735246162984960000, 15356385691181506363392000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = n! Sum[(n - k + 1) a[k]/k!, {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[1/(2 - 1/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) StirlingS1[n, k] 2^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1 / (2 - 1 / (1 - x)^2))) \\ Michel Marcus, Jul 18 2021

Formula

E.g.f.: 1 / (2 - 1 / (1 - x)^2).
E.g.f.: 1 / (1 - Sum_{k>=1} (k+1) * x^k).
a(0) = 1, a(1) = 2, a(2) = 14; a(n) = 4 * n * a(n-1) - 2 * n * (n-1) * a(n-2).
a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling1(n,k) * 2^k * A000670(k).
a(n) = n! * A003480(n).

A335848 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k!! * a(n-k).

Original entry on oeis.org

1, 1, 4, 21, 152, 1355, 14568, 182427, 2612224, 42073209, 752981280, 14823367845, 318347145216, 7406554353939, 185573713100160, 4981725842622795, 142650055922872320, 4340032650657965745, 139809806502181765632, 4754045863586538697077, 170163141506896128122880
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k!! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[1/(1 - x Exp[x^2/2] (1 + Sqrt[Pi/2] Erf[x/Sqrt[2]])), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: 1 / (1 - x * exp(x^2/2) * (1 + sqrt(Pi/2) * erf(x/sqrt(2)))), where erf() is the error function.
Showing 1-3 of 3 results.