cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308949 a(n) is the greatest divisor of A000129(n) that is coprime to A000129(m) for all positive integers m < n.

Original entry on oeis.org

1, 2, 5, 3, 29, 7, 169, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 1136689, 199, 6625109, 1121, 45697, 8119, 225058681, 1153, 45232349, 47321, 7761797, 38081, 44560482149, 961, 259717522849, 665857, 52734529, 1607521, 1800193921, 13067, 51422757785981
Offset: 1

Views

Author

Jianing Song, Jul 02 2019

Keywords

Comments

a(n) is squarefree unless n is of the form A214028(A238736(k)) = {7, 30, 1546462, ...}. The terms in A238736 are called 2-Wall-Sun-Sun primes.

Examples

			A000129(30) = 107578520350 = 2 * 5^2 * 7 * 29 * 31^2 * 41 * 269. We have 2, 7 divides A000129(6) = 70; 29, 41 divides A000129(10) = 2378; 5, 269 divides A000129(15) = 195025, but A000129(m) is coprime to 31 for all 1 <= m < 30, so a(30) = 31^2 = 961.
		

Crossrefs

Programs

  • Mathematica
    nmax = 40;
    pell = {1, 2};
    pp = {1, 2};
    Do[s = 2*pell[[-1]] + pell[[-2]];
      AppendTo[pell, s];
      AppendTo[pp, s/Times @@ pp[[Most[Divisors[n]]]]], {n, 3, nmax}];
    a[2] = 2;
    a[n_] := pp[[n]]/GCD[pp[[n]], n];
    Array[a, nmax] (* Jean-François Alcover, Jul 06 2019, after T. D. Noe in A008555 *)
  • PARI
    T(n) = ([2, 1; 1, 0]^n)[2, 1]
    b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
    a(n) = if(n==2, 2, b(n)/gcd(n, b(n)))

Formula

a(n) = A008555(n) / gcd(A008555(n), n) if n != 2.