A309000 Number of strings of length n from a 3-symbol alphabet (A,B,C, say) containing at least one "A" and at least two "B"s.
3, 22, 105, 416, 1491, 5034, 16365, 51892, 161799, 498686, 1524705, 4635528, 14037627, 42391378, 127763925, 384536924, 1156232175, 3474201510, 10434138825, 31326533680, 94029932643, 282194655482, 846802070205, 2540859195396, 7623517110231, 22872497487694
Offset: 3
Examples
Suppose three-sided dice each have sides labeled A,B,C. If there are three dice, then ABB, BAB, and BBA are the three strings resulting from rolling the dice satisfying the property of at least one A and at least two B's, hence a(3)=3 [Note a(0)=a(1)=a(2)=0]. If there are four such dice, there are 22 such permutations, hence a(4)=22: AABB, ABAB, ABBA, ABBB, ABBC, ABCB, ACBB, BAAB, BABA, BABB, BABC, BACB, BBAA, BBAB, BBAC, BBBA, BBCA, BCAB, BCBA, CABB, CBAB, CBBA.
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-31,51,-40,12).
Programs
-
Magma
[3^n-2^(n+1)-n*2^(n-1)+n+1: n in [3..40]]; // Vincenzo Librandi, Jul 05 2019
-
Mathematica
Array[3^# - 2^(# + 1) - # 2^(# - 1) + # + 1 &, 27, 3] (* or *) CoefficientList[Series[(-3 + 5 x)/((-1 + 3 x) (1 - 3 x + 2 x^2)^2), {x, 0, 26}], x] (* Michael De Vlieger, Jul 04 2019 *)
-
Python
[3**n-2**(n+1)-n*2**(n-1)+n+1 for n in range(3,20)]
Formula
a(n) = 3^n - 2^(n+1) - n*2^(n-1) + n + 1.
G.f.: x^3*(-3 + 5*x)/((-1 + 3*x)*(1 - 3*x + 2*x^2)^2). - Michael De Vlieger, Jul 04 2019.
a(n) = 9*a(n-1) - 31*a(n-2) + 51*a(n-3) - 40*a(n-4) + 12*a(n-5) for n > 7. - Stefano Spezia, Jul 05 2019
Comments