A330197 Number of scalene triangles whose vertices are the vertices of a regular n-gon.
0, 0, 0, 12, 14, 32, 54, 80, 110, 168, 208, 280, 360, 448, 544, 684, 798, 960, 1134, 1320, 1518, 1776, 2000, 2288, 2592, 2912, 3248, 3660, 4030, 4480, 4950, 5440, 5950, 6552, 7104, 7752, 8424, 9120, 9840, 10668, 11438, 12320, 13230, 14168, 15134, 16224, 17248
Offset: 3
Examples
Trivial cases: a(3)=0 since the only triangle formed by joining vertices is equilateral. a(4)=a(5)=0 since all such triangles are isosceles. For higher n, since a triangle is formed by choosing 3 vertices and joining them, there are C(n,3) such triangles. To obtain the number of scalene triangles, subtract the number of isosceles triangles (A320577).
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,2,-1,-4,-1,2,2,0,-1).
Crossrefs
Cf. A320577 (isosceles triangles).
Programs
-
Mathematica
a[n_] := If[Mod[n,6]==1 || Mod[n,6]==5, Binomial[n,3]-Binomial[n,2], If[Mod[n,6]==2 || Mod[n,6]==4, Binomial[n,3]-n*(n-2)/2, If[Mod[n, 6]==3, Binomial[n,3]-n*(3*n-7)/6, Binomial[n,3]-n*(3*n - 10)/6]]]; Array[a, 20, 3] LinearRecurrence[{0,2,2,-1,-4,-1,2,2,0,-1},{0,0,0,12,14,32,54,80,110,168},50] (* Harvey P. Dale, Aug 20 2021 *)
-
PARI
concat([0,0,0], Vec(2*x^6*(2 + x)*(3 + 2*x + x^2) / ((1 - x)^4*(1 + x)^2*(1 + x + x^2)^2) + O(x^60))) \\ Colin Barker, Jan 08 2020
-
Python
from sympy import binomial def a(n): assert (n>=3),"Sequence a(n) defined for n>=3" m = n % 6 Cn3 = binomial(n, 3) if m in [1,5]: return Cn3 - (n*(n-1))//2 elif m in [2,4]: return Cn3 - (n*(n-2))//2 elif m==3: return Cn3 - (n*(3*n-7))//6 else: return Cn3 - (n*(3*n-10))//6 print([a(k) for k in range(3,51)])
Formula
a(n) = binomial(n,3) - A320577(n).
a(n) = C(n,3)-n*(n-1)/2 if n mod 6 = 1 or 5; C(n,3)-n*(n-2)/2 if n mod 6 = 2 or 4; C(n,3)-n*(3*n-7)/6 if n mod 6 = 3; C(n,3)-n*(3*n-10)/6 otherwise [C(n,k) denoting binomial coefficients].
G.f.: 2*x^6*(2+x)*(3+x*(2+x))/((x-1)^4*(x+1)^2*(1+x+x^2)^2).
a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) - a(n-6) + 2*a(n-7) + 2*a(n-8) - a(n-10) for n>12. - Colin Barker, Jan 08 2020
Comments