cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309036 a(n) = gcd(A007504(n), A014285(n)).

Original entry on oeis.org

2, 1, 1, 17, 2, 1, 1, 7, 2, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 3, 8, 1, 1, 1, 20, 43, 1, 3, 4, 1, 1, 1, 28, 1, 1, 3, 2, 1, 1, 1, 2, 3, 107, 1, 4, 1, 1, 1, 2, 7, 1, 1, 10, 3, 1, 1, 30, 1, 1, 1, 2, 5, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 142, 1, 1, 3, 4, 1, 1, 11, 2, 1, 1, 1, 10
Offset: 1

Views

Author

Robert Israel, Jul 08 2019

Keywords

Comments

a(n) is even if n == 1 (mod 4).

Examples

			a(4) = gcd(2+3+5+7, 1*2+2*3+3*5+4*7) = gcd(17,51) = 17.
		

Crossrefs

Programs

  • Magma
    p:=PrimesUpTo(1000);[Gcd(&+[p[j]:j in [1..m]],&+[j*p[j]:j in [1..m]]): m in [1..90]]; // Marius A. Burtea, Jul 09 2019
  • Maple
    S1:= 0: S2:= 0:
    for n from 1 to 100 do
      p:= ithprime(n);
      S1:= S1 + p;
      S2:= S2 + n*p;
      A[n]:= igcd(S1,S2);
    od:
    seq(A[i],i=1..100);
  • Mathematica
    GCD @@ # & /@ Rest@ Nest[Append[#1, {#1[[-1, 1]] + #3, #1[[-1, -1]] + #2 #3}] & @@ {#1, #2, Prime@ #2} & @@ {#, Length@ #} &, {{0, 0}}, 89] (* Michael De Vlieger, Jul 08 2019 *)
  • PARI
    a(n) = gcd(sum(k=1, n, prime(k)), sum(k=1, n, k*prime(k))); \\ Michel Marcus, Jul 09 2019
    

Formula

a(n) = A007504(n)/A307716(n) = A014285(n)/A306834(n).