cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309085 a(n) = exp(4) * Sum_{k>=0} (-4)^k*k^n/k!.

Original entry on oeis.org

1, -4, 12, -20, -20, 172, 108, -2388, -3220, 47532, 161900, -1062740, -8532628, 13623212, 431041132, 1206169260, -17833021588, -169685043796, 180187176044, 13462762665132, 79377664422252, -553096696140884, -11670986989785492, -44371854928405844, 829755609457185644
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 11 2019

Keywords

Crossrefs

Column k = 4 of A292861.

Programs

  • Magma
    [1] cat [(&+[((-4)^k*StirlingSecond(m,k)):k in [0..m]]):m in [1..24]]; // Marius A. Burtea, Jul 11 2019
    
  • Mathematica
    Table[Exp[4] Sum[(-4)^k k^n/k!, {k, 0, Infinity}], {n, 0, 24}]
    Table[BellB[n, -4], {n, 0, 24}]
    nmax = 24; CoefficientList[Series[Sum[(-4)^j x^j/Product[(1 - k x), {k, 1, j}] , {j, 0, nmax}], {x, 0, nmax}], x]
    nmax = 24; CoefficientList[Series[Exp[4 (1 - Exp[x])], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = sum(k=0, n, (-4)^k * stirling(n,k,2)); \\ Michel Marcus, Jul 12 2019

Formula

G.f.: Sum_{j>=0} (-4)^j*x^j / Product_{k=1..j} (1 - k*x).
E.g.f.: exp(4*(1 - exp(x))).
a(n) = Sum_{k=0..n} (-4)^k * Stirling2(n,k).