A309104 a(n) = Sum_{k >= 0} floor(n^(2*k+1) / (2*k+1)!).
0, 1, 3, 9, 25, 72, 199, 545, 1487, 4048, 11007, 29930, 81371, 221199, 601295, 1634499, 4443044, 12077466, 32829974, 89241138, 242582585, 659407853, 1792456409, 4872401708, 13244561050, 36002449653, 97864804699, 266024120286, 723128532126, 1965667148555
Offset: 0
Keywords
Examples
For n = 5: - we have: k 5^(2*k+1)/(2*k+1)! - ------------------ 0 5 1 20 2 26 3 15 4 5 5 1 >=6 0 - hence a(5) = 5 + 20 + 26 + 15 + 5 + 1 = 72.
Links
- Robert Israel, Table of n, a(n) for n = 0..2300
- Wikipedia, Taylor series: Hyperbolic functions
Programs
-
Maple
f:= proc(n) local t,k,v; v:= n; t:= n; for k from 1 do v:= v*n^2/(2*k*(2*k+1)); if v < 1 then return t fi; t:= t + floor(v); od end proc: map(f, [$0..30]); # Robert Israel, Mar 18 2020
-
PARI
a(n) = { my (v=0, d=n); forstep (k=2, oo, 2, if (d<1, return (v), v += floor(d); d *= n^2/(k*(k+1)))) }
Formula
a(n) ~ sinh(n) as n tends to infinity.
a(n) <= A000471(n).
Extensions
Definition corrected by Robert Israel, Mar 18 2020
Comments