cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309131 Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.

Original entry on oeis.org

2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2019

Keywords

Comments

T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n).
The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1).
The k-th column of the triangle T gives the multiples of prime(1 + k).
Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - Michel Marcus, Jul 15 2019

Examples

			The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k|    0     1     2     3     4     5     6     7     8
---+-----------------------------------------------------
1  |    2
2  |    4     3
3  |    6     6     5
4  |    8     9    10     7
5  |   10    12    15    14    11
6  |   12    15    20    21    22    13
7  |   14    18    25    28    33    26    17
8  |   16    21    30    35    44    39    34    19
9  |   18    24    35    42    55    52    51    38    23
...
For n = 3 the matrix M(3) is
          2,         3,         5
    M_{2,1},         2,         3
    M_{3,1},   M_{3,2},         2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
		

Crossrefs

Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal.

Programs

  • Magma
    [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
    
  • Maple
    a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]]
  • PARI
    T(n, k) = (n - k)*prime(1 + k);
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
    
  • Sage
    [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output

Formula

T(n, k) = A025581(n, k)*A000040(1 + k).