A309257 a(n) is the minimum positive value of the determinants of circulant order n Latin squares.
1, 3, 18, 80, 75, 3087, 196, 1440, 405, 6325, 726, 7488, 1183, 11025, 1800
Offset: 1
Examples
For n=2, a(2)=3 is the minimum absolute value determinant of a back circulant Latin square of order 2. An example of one such matrix is [[2 1], [1 2]]. For n=5, a(5)= 75 is the minimum absolute value determinant of a back circulant Latin square of order 5. An example of one such matrix is [[1, 2, 4, 5, 3], [3, 1, 2, 4, 5], [5, 3, 1, 2, 4], [4, 5, 3, 1, 2], [2, 4, 5, 3, 1]] has determinant 75.
Links
- Froylan Maldonado, Minimum absolute value determinant of back circulant Latin squares code
Programs
-
Sage
See Maldonado link.
Extensions
Modified title and a(8)-a(13) from Hugo Pfoertner, Oct 01 2019
a(14) from Hugo Pfoertner, Oct 07 2019
a(15) from Hugo Pfoertner, Oct 13 2019
Comments