A309298 (1/6) times the sum of the elements of all subsets of [n] whose sum is divisible by six.
0, 0, 0, 1, 2, 7, 20, 49, 132, 330, 786, 1892, 4472, 10368, 23940, 54720, 123836, 278664, 622896, 1383672, 3058720, 6729184, 14738688, 32157312, 69907200, 151461952, 327158208, 704648448, 1513680192, 3243601280, 6934595840, 14793782400, 31496441856, 66929938944
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,14,-36,72,-60,72,-144,104,-48,96,-64).
Crossrefs
Column k=6 of A309280.
Programs
-
Mathematica
CoefficientList[Series[-x^3*(96*x^16 - 80*x^15 + 8*x^14 - 140*x^13 + 112*x^12 + 12*x^11 + 40*x^10 - 36*x^9 - 32*x^8 + 32*x^7 - 14*x^6 + 20*x^5 - 21*x^4 + 12*x^3 - 7*x^2 + 4*x - 1)/((2*x - 1)^3*(2*x^3 - 1)^3), {x, 0, 40}], x] (* Wesley Ivan Hurt, Jul 23 2025 *) LinearRecurrence[{6,-12,14,-36,72,-60,72,-144,104,-48,96,-64},{0,0,0,1,2,7,20,49,132,330,786,1892,4472,10368,23940,54720,123836,278664,622896,1383672},40] (* Harvey P. Dale, Aug 01 2025 *)
Formula
G.f.: -x^3*(96*x^16-80*x^15+8*x^14-140*x^13+112*x^12+12*x^11 +40*x^10 -36*x^9 -32*x^8 +32*x^7 -14*x^6 +20*x^5 -21*x^4+12*x^3-7*x^2 +4*x-1) / ((2*x-1)^3 *(2*x^3-1)^3).
a(n) = 6*a(n-1) - 12*a(n-2) + 14*a(n-3) - 36*a(n-4) + 72*a(n-5) - 60*a(n-6) + 72*a(n-7) - 144*a(n-8) + 104*a(n-9) - 48*a(n-10) + 96*a(n-11) - 64*a(n-12). - Wesley Ivan Hurt, Jul 23 2025