A309322 Expansion of Sum_{k>=1} phi(k) * x^k/(1 - x^k)^3, where phi = Euler totient function (A000010).
1, 4, 8, 15, 19, 35, 34, 56, 63, 86, 76, 141, 103, 157, 182, 212, 169, 294, 208, 355, 335, 359, 298, 556, 405, 490, 522, 657, 463, 865, 526, 816, 773, 812, 856, 1239, 739, 1003, 1058, 1424, 901, 1610, 988, 1525, 1617, 1445, 1174, 2188, 1435, 1960, 1760, 2091, 1483, 2529, 1994
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[Sum[EulerPhi[n/d] d (d + 1)/2, {d, Divisors[n]}], {n, 1, 55}] Table[Sum[Sum[GCD[j, k, n], {j, 1, k}], {k, 1, n}], {n, 1, 55}]
Formula
a(n) = Sum_{d|n} phi(n/d) * d * (d + 1)/2.
a(n) = Sum_{k=1..n} Sum_{j=1..k} gcd(j,k,n).
a(n) = Sum_{k=1..n} gcd(n,k)*(gcd(n,k)+1)/2. - Richard L. Ollerton, May 07 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (36*zeta(3)). - Vaclav Kotesovec, May 23 2021
Comments