cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309322 Expansion of Sum_{k>=1} phi(k) * x^k/(1 - x^k)^3, where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 4, 8, 15, 19, 35, 34, 56, 63, 86, 76, 141, 103, 157, 182, 212, 169, 294, 208, 355, 335, 359, 298, 556, 405, 490, 522, 657, 463, 865, 526, 816, 773, 812, 856, 1239, 739, 1003, 1058, 1424, 901, 1610, 988, 1525, 1617, 1445, 1174, 2188, 1435, 1960, 1760, 2091, 1483, 2529, 1994
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 23 2019

Keywords

Comments

Dirichlet convolution of Euler totient function with triangular numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[EulerPhi[n/d] d (d + 1)/2, {d, Divisors[n]}], {n, 1, 55}]
    Table[Sum[Sum[GCD[j, k, n], {j, 1, k}], {k, 1, n}], {n, 1, 55}]

Formula

a(n) = Sum_{d|n} phi(n/d) * d * (d + 1)/2.
a(n) = Sum_{k=1..n} Sum_{j=1..k} gcd(j,k,n).
a(n) = Sum_{k=1..n} gcd(n,k)*(gcd(n,k)+1)/2. - Richard L. Ollerton, May 07 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (36*zeta(3)). - Vaclav Kotesovec, May 23 2021
a(n) = (A018804(n) + A069097(n))/2. - Ridouane Oudra, May 22 2025