A343516
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ... , x_k, n).
Original entry on oeis.org
1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 9, 1, 7, 17, 26, 19, 15, 1, 8, 23, 42, 39, 35, 13, 1, 9, 30, 64, 74, 76, 34, 20, 1, 10, 38, 93, 130, 153, 90, 56, 21, 1, 11, 47, 130, 214, 287, 216, 152, 63, 27, 1, 12, 57, 176, 334, 506, 468, 379, 191, 86, 21
Offset: 1
T(4,2) = gcd(1,1,4) + gcd(1,2,4) + gcd(2,2,4) + gcd(1,3,4) + gcd(2,3,4) + gcd(3,3,4) + gcd(1,4,4) + gcd(2,4,4) + gcd(3,4,4) + gcd(4,4,4) = 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 4 = 15.
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 4, 5, 6, 7, 8, 9, ...
5, 8, 12, 17, 23, 30, 38, ...
8, 15, 26, 42, 64, 93, 130, ...
9, 19, 39, 74, 130, 214, 334, ...
15, 35, 76, 153, 287, 506, 846, ...
13, 34, 90, 216, 468, 930, 1722, ...
-
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * Binomial[k + # - 1, k] &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
-
T(n, k) = sumdiv(n, d, eulerphi(n/d)*binomial(d+k-1, k));
A309323
Expansion of Sum_{k>=1} phi(k) * x^k/(1 - x^k)^4, where phi = Euler totient function (A000010).
Original entry on oeis.org
1, 5, 12, 26, 39, 76, 90, 152, 191, 275, 296, 492, 467, 674, 798, 1000, 985, 1467, 1348, 1934, 2011, 2360, 2322, 3420, 3085, 3791, 4062, 4944, 4523, 6454, 5486, 7168, 7237, 8189, 8340, 10942, 9175, 11300, 11714, 14208, 12381, 16759, 14232, 18036, 18549, 19706, 18470
Offset: 1
-
nmax = 47; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Sum[EulerPhi[n/d] d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 1, 47}]
Table[Sum[Sum[Sum[GCD[i, j, k, n], {i, 1, j}], {j, 1, k}], {k, 1, n}], {n, 1, 47}]
A344521
a(n) = Sum_{1 <= i <= j <= k <= n} gcd(i,j,k).
Original entry on oeis.org
1, 5, 13, 28, 47, 82, 116, 172, 235, 321, 397, 538, 641, 798, 980, 1192, 1361, 1655, 1863, 2218, 2553, 2912, 3210, 3766, 4171, 4661, 5183, 5840, 6303, 7168, 7694, 8510, 9283, 10095, 10951, 12190, 12929, 13932, 14990, 16414, 17315, 18925, 19913, 21438, 23055, 24500, 25674, 27862
Offset: 1
-
a[n_] := Sum[Sum[Sum[GCD[i, j, k], {i, 1, j}], {j, 1, k}], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 25 2021 *)
nmax = 100; Rest[CoefficientList[Series[1/(1 - x)*Sum[EulerPhi[k]*x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 05 2021 *)
Accumulate[Table[Sum[EulerPhi[n/d] * d*(d+1)/2, {d, Divisors[n]}], {n, 1, 100}]] (* Vaclav Kotesovec, Jun 05 2021 *)
-
a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, gcd([i, j, k]))));
A344992
a(n) = Sum_{1 <= i <= j <= k <= m <= n} gcd(i,j,k,m).
Original entry on oeis.org
1, 6, 18, 44, 83, 159, 249, 401, 592, 867, 1163, 1655, 2122, 2796, 3594, 4594, 5579, 7046, 8394, 10328, 12339, 14699, 17021, 20441, 23526, 27317, 31379, 36323, 40846, 47300, 52786, 59954, 67191, 75380, 83720, 94662, 103837, 115137, 126851, 141059, 153440
Offset: 1
-
Table[Sum[Sum[Sum[Sum[GCD[i, j, k, m], {i, 1, j}], {j, 1, k}], {k, 1, m}], {m, 1, n}], {n, 1, 100}]
nmax = 100; Rest[CoefficientList[Series[1/(1-x) * Sum[EulerPhi[k]*x^k/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
Accumulate[Table[Sum[EulerPhi[n/d] * d*(d+1)*(d+2)/6, {d, Divisors[n]}], {n, 1, 100}]] (* faster *)
-
a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, sum(m=k, n, gcd([i, j, k, m]))))); \\ Michel Marcus, Jun 06 2021
Showing 1-4 of 4 results.
Comments