A309528 The number of non-equivalent distinguishing colorings of the cycle on n vertices with at most k colors (k>=1). The cycle graph is defined for n>=3; extended to n=1,2 using the closed form. Square array read by descending antidiagonals: the rows are indexed by n, the number of vertices of the cycle and the columns are indexed by k, the number of permissible colors.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 10, 15, 12, 1, 0, 0, 0, 20, 45, 72, 37, 2, 0, 0, 0, 35, 105, 252, 266, 117, 6, 0, 0, 0, 56, 210, 672, 1120, 1044, 333, 14, 0, 0, 0, 84, 378, 1512, 3515, 5270, 3788, 975, 30, 0, 0, 0, 120, 630, 3024, 9121, 19350, 23475, 14056, 2712, 62, 0
Offset: 1
Examples
The table begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 0, 1, 4, 10, 20, 35, 56, 84, 120, ... 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, ... 0, 0, 12, 72, 252, 672, 1512, 3024, 5544, 9504, ... 0, 1, 37, 266, 1120, 3515, 9121, 20692, 42456, 80565, ... 0, 2, 117, 1044, 5270, 19350, 57627, 147752, 338364, 709290, ... 0, 6, 333, 3788, 23475, 102690, 355446, 1039248, 2673810, 6222150, ... 0, 14, 975, 14056, 106950, 555990, 2233469, 7440160, 21493836, 55505550, ... 0, 30, 2712, 51132, 483504, 3009426, 14089488, 53611992, 174189024, 499720518, ... ------ For n=4, we can color the vertices of the cycle C_4 with at most 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows: { { 1 }, { 2 }, { 3, 4 } } { { 1 }, { 2, 3 }, { 4 } } { { 1, 2 }, { 3 }, { 4 } }
Links
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
Crossrefs
Programs
-
PARI
A(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2} \\ Andrew Howroyd, Aug 11 2019
Comments