cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102326 Primes p such that the largest prime divisor of p^4+1 is less than p.

Original entry on oeis.org

10181, 14051, 18979, 25253, 57173, 58013, 60101, 62497, 65951, 66541, 69457, 75931, 82241, 82261, 84229, 87721, 88339, 88819, 91499, 92333, 95917, 99523, 105557, 107747, 109229, 118493, 118927, 137339, 146291, 155399, 157019
Offset: 1

Views

Author

Labos Elemer, Jan 05 2005

Keywords

Comments

Primes in A309562. - Robert Israel, Aug 09 2019

Examples

			p = 10181, 1+p^4 = 10743894862923122 = 2*17*1657*4657*5113*8009, so the largest prime factor is 8009 < p = 10181.
		

Crossrefs

Programs

  • Maple
    filter:= proc(p) max(numtheory:-factorset(p^4+1)) < p end proc:
    select(filter, [seq(ithprime(i),i=1..20000)]); # Robert Israel, Aug 09 2019
  • Mathematica
    <Ray Chandler, Jan 08 2005 *)
    Select[Prime[Range[15000]],FactorInteger[#^4+1][[-1,1]]<#&] (* Harvey P. Dale, Feb 27 2017 *)
  • PARI
    isok(p) = isprime(p) && (vecmax(factor(p^4+1)[,1]) < p); \\ Michel Marcus, Jul 09 2018

Extensions

Extended by Ray Chandler, Jan 08 2005
Showing 1-1 of 1 results.