A102326 Primes p such that the largest prime divisor of p^4+1 is less than p.
10181, 14051, 18979, 25253, 57173, 58013, 60101, 62497, 65951, 66541, 69457, 75931, 82241, 82261, 84229, 87721, 88339, 88819, 91499, 92333, 95917, 99523, 105557, 107747, 109229, 118493, 118927, 137339, 146291, 155399, 157019
Offset: 1
Keywords
Examples
p = 10181, 1+p^4 = 10743894862923122 = 2*17*1657*4657*5113*8009, so the largest prime factor is 8009 < p = 10181.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(p) max(numtheory:-factorset(p^4+1)) < p end proc: select(filter, [seq(ithprime(i),i=1..20000)]); # Robert Israel, Aug 09 2019
-
Mathematica
<
Ray Chandler, Jan 08 2005 *) Select[Prime[Range[15000]],FactorInteger[#^4+1][[-1,1]]<#&] (* Harvey P. Dale, Feb 27 2017 *) -
PARI
isok(p) = isprime(p) && (vecmax(factor(p^4+1)[,1]) < p); \\ Michel Marcus, Jul 09 2018
Extensions
Extended by Ray Chandler, Jan 08 2005
Comments