cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309634 G.f.: x * Sum_{k>=1} x^k / (1 - x^k)^a(k).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 5, 4, 1, 7, 1, 9, 8, 6, 1, 7, 6, 7, 8, 14, 1, 18, 1, 9, 12, 6, 23, 17, 1, 9, 17, 17, 1, 35, 1, 31, 41, 8, 1, 23, 29, 24, 12, 44, 1, 33, 47, 49, 30, 16, 1, 61, 1, 20, 120, 40, 84, 105, 1, 35, 23, 85, 1, 68, 1, 19, 115, 88, 151, 160, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 10 2019

Keywords

Crossrefs

Cf. A028815 (positions of 1's), A157019, A309633.

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory;
          add(binomial((n-1)/d+a(d)-2, a(d)-1), d=divisors(n-1))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 27 2025
  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x Sum[x^k/(1 - x^k)^a[k], {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 80}]
    a[n_] := a[n] = Sum[Binomial[(n - 1)/d + a[d] - 2, a[d] - 1], {d, Divisors[n - 1]}]; a[1] = 0; Table[a[n], {n, 1, 80}]
  • PARI
    seq(n)={my(v=vector(n)); v[2]=1; for(n=2, #v-1, v[n+1] = sumdiv(n, d, binomial(n/d + v[d] - 2, v[d] - 1))); v} \\ Andrew Howroyd, Aug 10 2019

Formula

a(1) = 0; a(n+1) = Sum_{d|n} binomial(n/d+a(d)-2,a(d)-1).